
PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

2/46

// CONTENTS

// ABOUT THIS BENCHMARK	 3
Introduction	 3
OnGres Ethics Policy	 4
Authors	 4
// �EXECUTIVE SUMMARY. BENCHMARKS KEY FINDINGS	 5
Transactions benchmark	 5
OLTP Benchmark	 6
OLAP Benchmark	 6
// METHODOLOGY AND BENCHMARKS	 7
Introduction and objectives	 7
Benchmarks performed	 7
About the technologies involved	 8
Automated infrastructure	 9
// TRANSACTIONS BENCHMARK	 12
Benchmark description	 12
MongoDB transaction limitations	 14
Discussion on transaction isolation levels	 14
Benchmark results	 17
// OLTP BENCHMARK	 25
Benchmark description	 25
Initial considerations	 26
Benchmark results	 29
// OLAP BENCHMARK	 38
Benchmark description	 38
Benchmark results	 45

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

3/46

// ABOUT THIS BENCHMARK

Introduction
Benchmarking is hard. Benchmarking databases, harder. Benchmarking databases that
follow different approaches (relational vs document) is even harder. There are many
reasons why this is true, widely discussed in the industry.

Notwithstanding all these difficulties, the market demands these kinds of benchmarks.
Despite the different data models that MongoDB and PostgreSQL expose, many
developers and organizations face a challenge when choosing between the platforms.
And while they can be compared on many fronts, performance is undoubtedly one of the
main differentiators — arguably the main one.

How then do you leverage an informative benchmark so that decisions can be made
about the choice of a given technology, while at the same time presenting a fair arena in
which the technologies compete in an apples-to-apples scenario? To fulfill these goals,
this benchmark has been executed based on the following criteria:

	 • �Transparency and reproducibility. The framework that has been programmed and
used to run the benchmarks is fully automated and is published as open source.
Anyone may use the same tools, and reproduce the same results. Or change
parameters and configurations and derive your own. Since it is designed to run on a
public cloud, it’s available to anyone. Both public and generated datasets have been
used.

	 • �Multiple benchmarks. Picking a single benchmark or benchmark type presents
results only from one perspective. This benchmark includes tests on OLTP-like
workloads, OLAP-like workloads, and benchmarks specific to transactions.

	 • �Fairness. It’s hard to assess fairness, especially when one database is more “native”
on a given test or benchmark technology. But both databases are quite “multi-modal”
as of today: PostgreSQL supports documents with its jsonb data type, and MongoDB
supports “relational” workloads with its joins ($lookup) and transaction support.
Similarly, there are benchmarks that are more suited for one or the other model. The
exercised features are then only those that are common across databases and/or
clearly advertised as such.

	 • �Detailed analysis. This white paper includes a detailed analysis of each result. All the
tests were run with system monitoring information in parallel, to capture runtime
information that may help inform the results discussion.

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

4/46

OnGres Ethics Policy
This benchmark was conducted by OnGres (www.ongres.com), according to OnGres
Ethics Policy. EnterpriseDB (www.enterprisedb.com) sponsored the work.

The policy guarantees that the following requisites are observed:

	 • �No technology is favored over another.

	 • �No results are edited or omitted.

	 • �The sponsor of the work does not intervene in the strategy, implementation or
execution of the work.

	 • �Results are verifiable by external, third parties.

	 • �All the work is conducted with the maximum degree of professionalism and
independence.

Disclaimer. OnGres is a company expert in PostgreSQL, and as such may show a higher
degree of knowledge of Postgres-based systems.

Authors
Project Director: Álvaro Hernández Tortosa aht@ongres.com

DBAs and developers: Francis del Carmen Santiago Cermeño, Emanuel Calvo, Gerardo
Herzig, Sergio Alejandro Ostapowicz, Matteo Melli, Jorge Daniel Fernández.

{fcsantiago,emanuel,saomec,gerardo.herzig,matteom,jorgedf}@ongres.com

http://www.ongres.com/
http://www.enterprisedb.com/

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

5/46

// �EXECUTIVE SUMMARY: BENCHMARKS KEY FINDINGS
The goal of this benchmark project is to compare the performance of PostgreSQL and
MongoDB Community Server on several different workloads, while trying to make them
resemble production scenarios as much as possible. Another goal of the benchmark is to
automate all the benchmark infrastructure so that results can be easily reproduced by
third parties. All the software has been published as open source.

Three benchmarks have been considered:

	 • �Transaction benchmark. A custom-developed benchmark, inspired by MongoDB
Pymongo-Transactions Project, that models an airline reservation system.

	 • Sysbench for OLTP workloads, considering both in-memory and 2TB datasets.

	 • �A JSON-based OLAP benchmark measuring query performance on four custom-
written queries over 1 year of GitHub archive data, using jsonb in PostgreSQL.

PostgreSQL 11 was found to be faster than MongoDB 4.0 in almost every benchmark.
Throughput was higher, ranging from dozens of percent points up to one and even two
orders of magnitude on some benchmarks. Latency, when measured by the benchmark,
was also lower on PostgreSQL.

More detailed findings for the three benchmarks can be summarized as follows in the
next subsections.

Transactions benchmark
	 • �MongoDB without using transactions runs on the equivalent of READ UNCOMMITTED

isolation mode. This allows phenomena like non-consistent reads, skipped
documents on a query or reading data that is not durable to happen. Avoiding these
inconsistencies puts significant burden on the application developer.

	 • �MongoDB with transactions offers SERIALIZABLE isolation guarantees. PostgreSQL
has been tested both with READ COMMITTED and SERIALIZABLE isolation levels.
MongoDB was found to be one order of magnitude (4x-15x) slower than PostgreSQL
on READ COMMITTED; or 4-14x slower compared to PostgreSQL on SERIALIZABLE –
when comparing exactly the same level of isolation guarantees provided. PostgreSQL
SERIALIZABLE is a bit slower than READ COMMITTED, but not by much. PostgreSQL
processes more than 20 thousand transactions per second when MongoDB doesn’t
reach 2 thousand.

https://github.com/jdrumgoole/pymongo-transactions
https://github.com/jdrumgoole/pymongo-transactions

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

6/46

	 • �PostgreSQL latencies are under 50ms for the 99% percentile, and as low as less
than 1 millisecond. Under all concurrency levels, half of the transactions (median)
take less than 10ms. MongoDB latencies are significantly higher: median latency is
5-20 times higher than that of PostgreSQL; and 99 percentile is 7-17 times worse.
MongoDB minimum median latency is 5ms in the best case (without concurrency)
and spikes to hundreds of milliseconds on several scenarios.

OLTP Benchmark
	 • �PostgreSQL performance depends heavily on the number of concurrent users

(connections). When tuned for the optimal number of connections, it performs very
well, but performance drops if it is overwhelmed with connections. PgBouncer or
some other similar connection pooler is recommended. In this case, PostgreSQL
performance is stable close to the maximum performance. This is a recommended
pattern in production.

	 • �For the XL test (2TB database, doesn’t fit in memory), PostgreSQL outperforms
MongoDB in every scenario. If PgBouncer is used, it is between 25x-40x times faster.

	 • ��For the in-memory test (4GB database, fits in memory), PostgreSQL outperforms
MongoDB by a factor of 2-3x. This applies both to XFS and ZFS filesystems.

	  � If PostgreSQL is run without PgBouncer, then it is only faster than MongoDB when
used under the optimal number of concurrent users, but this is not recommended.
When that number grows, it becomes slower by a factor of 3-4x.

OLAP Benchmark
A 200M records dataset of JSON documents was loaded in MongoDB natively and
in PostgreSQL using the jsonb datatype. Appropriate indexes where created on both
databases.

Four queries were run. PostgreSQL was found to be between 35-53% faster on three of
the four queries, and 22% slower on the other query.

Future work here may involve re-running the benchmark again with TB-sized datasets
typical of OLAP/BI workloads. And also a new test where the JSON data would be
transformed into a normalized, relational schema using plain SQL (no jsonb) in PostgreSQL.
Based on previous existing work, this could lead to significantly faster queries on
PostgreSQL, and would model more closely the reality, where a proper relational schema
would be designed. See detailed OLAP conclusions for more information.

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

7/46

// METHODOLOGY AND BENCHMARKS

Introduction and objectives
This project was designed to do a performance comparison between PostgreSQL 11.1
and MongoDB 4.0. The main goal is to analyze their capabilities and performance in the
same data design, with different active dataset sizes and also, testing the performance
of transactions.

Databases aren’t excluded from any of the inherent complexities of running comparisons,
especially when engines are scoped for different purposes or systems or have different
sets of features and driver availability.

Both MongoDB and PostgreSQL have different engines and concepts as languages,
making both systems completely different, yet sometimes they are used for the same
purpose but to take advantage of their specific features.

The results of general tools such as YCSB and Sysbench might need to be considered
with some reservations as drivers work differently and report and behave differently.
Otherwise, all the tool configurations were replicated to all tests, done programmatically
and verified and validated through several runs.

Certain configurations, code and techniques may be improved upon by other experts.
While the results may be challenged, they were validated by peers and repeated tests
that drive the numbers shown in this report. We welcome this and hope that our open
source approcach will facilitate it.

Benchmarks performed
There were three main types of benchmarks performed:

	 • �Transactions benchmark. Test the new MongoDB 4.0 capabilities in running multi-
document ACID transactions, measuring performance and latency.

	 • �OLTP. Query performance and latency, on in-memory and bigger (2TB) datasets, for
small operations from a varying degree of concurrent users.

	 • �OLAP. Performance (duration) of 4 long-running queries over a large dataset.

Both MongoDB and PostgreSQL were used in single-node configuration, with replication
and journaling active. MongoDB sharding was not used as transactions across shards are
not supported on 4.0. It is left as a future benchmark to compare performance between

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

8/46

sharding on MongoDB and PostgreSQL sharding solutions, including transaction support
once it is available for MongoDB shards.

About the technologies involved

PostgreSQL 11
PostgreSQL is a powerful, open-source object-relational database system that uses
and extends the SQL language combined with many features that safely store and scale
the most complicated data workloads. PostgreSQL originated in 1986 as part of the
POSTGRES project at the University of California at Berkeley and now has more than 30
years of active development on the core platform.

PostgreSQL has earned a strong reputation for its proven architecture, reliability, data
integrity, robust feature set and extensibility. The software has the dedication of the
open-source community for its consistency in delivering performant and innovative
solutions. PostgreSQL runs on all major operating systems, has been ACID-compliant
since 2001 and has powerful add-ons such as the popular PostGIS geospatial database
extender. It is no surprise that PostgreSQL has become the open-source relational
database of choice for many people and organizations.

It is transactional by default (and it does not support read uncommitted isolation). It
supports a wide variety of data types, including jsonb (a binary format of json), which is
used in one of the benchmarks for using OLAP queries imitating MongoDB.

For datasets in memory, it is possible to access in-memory columnar data stores in
Postgres through Cstore, as a mechanism to speed up aggregations in memory. It is not
included in the vanilla distribution, and is not used in this benchmark. But as with many
other pluggable extensions it can be attached to the Postgres instance with very few
steps.

MongoDB 4.0
MongoDB Community Server1 version 4.0 was used for all the benchmarks.

MongoDB is a Document Store database which allows you to store data in flexible, JSON-
like documents, meaning fields can vary from document to document and data structure
can be changed over time.

1 ��MongoDB Enterprise Subscription agreement expressly prohibits “publicly disseminate per-
formance information or analysis including, without limitation benchmarking test results” (see
https://www.mongodb.com/subscription-and-services-agreement-february-2014 § 3.3.f)

https://www.postgresql.org/docs/current/history.html
https://www.postgresql.org/download/
https://en.wikipedia.org/wiki/ACID
https://postgis.net/
https://github.com/citusdata/cstore_fdw
https://www.mongodb.com/subscription-and-services-agreement-february-2014

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

9/46

One of the strongest features is that the document model maps to the objects in your
application code, making data easy to work with.

Version 4.0 has new aggregation capabilities and transaction support, which enriches
the analytics and allows multi document consistency.

MongoDB is a distributed database at its core, so high availability, horizontal scaling and
geographic distribution are built in and easy to use.

It is worth mentioning that the engine tested in the current document is WiredTiger, which
is the default. MongoDB supports pluggable engines, and there is an engine available in
the enterprise version for in-memory datasets.

Cloud provider: Amazon Web Services (AWS)
For running the benchmarks, AWS was chosen since it is considered the most popular
among the cloud providers. For choosing the resources for the benchmarks, only stable
instance types have been chosen (mid- to high-end tier machines).

For isolating the impact of the client, all the tests have been driven under a client/server
infrastructure, allowing it to isolate the database from any noise coming from the client.

Automated infrastructure
By design, all benchmarks have been designed to be run automatically and
programmatically. The modern pattern IaC (“Infrastructure As Code”) was used. The goal
is to make all tests easily reproducible by third parties. All the code used is published as
open source and resides in two repositories:

	 • �Benchmark platform: code to automate running all the benchmarks: https://gitlab.
com/ongresinc/benchplatform

	 • �Transactions benchmark: https://gitlab.com/ongresinc/txbenchmark

The automated infrastructure has been coded in Terraform, with a side-by-side equal
infrastructure setup for all the engines. Setting this up from scratch only requires placing
an .env file in the root directory at the repository and running the make setup command
for deploying the reproducible benchmarks.

Load and Run phases have been automated, so all the snapshots are fully reproducible
in code. Also, the results can be found and explored in the S3 endpoint, organized by
target and benchmark id (uuid).

https://en.wikipedia.org/wiki/Infrastructure_as_code
https://gitlab.com/ongresinc/benchplatform
https://gitlab.com/ongresinc/benchplatform
https://gitlab.com/ongresinc/txbenchmark/
http://benchplatform.ongres.com.s3.amazonaws.com/

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

10/46

All the benchmarks used the following instance type:

Client Specs

Model vCPU* Mem (GiB) Storage
(GiB)

Dedicated
EBSBandwidth

(Mbps)

Network
Performance

(Gbps)
c5.xlarge 4 8 EBS-Only Up to 3,500 Up to 10

Clients do not have attached volumes.

Datanode Specs

Model vCPU* Mem (GiB) Storage
(GiB)

Dedicated EBS
Bandwidth

(Mbps)

Network
Performance

(Gbps)
m5.4xlarge 16 64 EBS-only 3,500 Up to 10

Data volume: io1, with number of reserved IOPS depending on the test.

All m5 instances have the following specs:

	 • �Up to 3.1 GHz Intel Xeon Platinum Processor

	 • �Intel AVX†, Intel AVX2†, Intel Turbo

	 • �EBS Optimized

	 • �Enhanced Networking†

MongoDB configuration
The only configuration that has been set up is the data directory, which is to be used in
an isolated volume (/opt/data). In general, MongoDB does not require or benefit from
significant tuning.

https://aws.amazon.com/ec2/instance-types/#Intel
https://aws.amazon.com/ec2/instance-types/#EBS
https://aws.amazon.com/ec2/features/#enhanced-networking

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

11/46

PostgreSQL configuration
PostgreSQL had the basic tuning parameters applied for memory and connection settings,
as well as some of the usual production values. No significant tuning effort was done:

max_connections = 600
shared_buffers = 12GB
temp_buffers = 256MB
wal_level = replica
checkpoint_timeout = 15min # range 30s-1d
max_wal_size = 100GB
min_wal_size = 1GB
checkpoint_completion_target = 0.9
wal_keep_segments = 0
seq_page_cost = 1.0 # measured on an arbitrary scale
random_page_cost = 1.3 # we use io1, NVME
effective_cache_size = 36GB
default_statistics_target = 200

Note that max_connections is set at a high number to test different number of incoming
connections. The OLTP benchmark will show in detail the results of different concurrent
users.

PgBouncer configuration
As described on the OLTP benchmark, when working with large numbers of client
connections, it is considered best practices to run PostgreSQL using a load balancer such
as PgBouncer for connection pooling. The configuration used for this benchmark is:

pool_mode = transaction
server_reset_query_always = 0
ignore_startup_parameters = extra_float_digits
max_client_conn = 5000
default_pool_size = 50
min_pool_size = 50
max_db_connections = 50
server_idle_timeout = 20
client_idle_timeout = 20
idle_transaction_timeout = 20

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

12/46

// TRANSACTIONS BENCHMARK
MongoDB announced support for multi-document ACID transactions as one of the main
features for version 4.0, if not the main one. The goal of this benchmark is to compare an
ACID transactional system by default, PostgreSQL, with MongoDB 4.0 using equivalent
levels of transaction isolation.

Benchmark description
Given that MongoDB’s support for transactions is quite recent, there are no benchmarks
ready to exercise this capability. Since sysbench industry standard benchmark was used
for the OLTP benchmark, a first attempt was made to modify the code of the sysbench
benchmark to add transactions support to it. The effort was not successful, however
probably due to limitations in the driver used by this benchmark.

To support this analysis, a new benchmark was created from scratch, and it’s published
as open source: https://gitlab.com/ongresinc/txbenchmark. It has been developed in
Java with a plan to elaborate on a test/benchmark already proposed by MongoDB. In
particular, it was modeled on a similar scenario to the one proposed in Introduction to
MongoDB Transactions in Python, which led to the creation of the pymongo-transactions
software.

The benchmark simulates users buying airline tickets, and generating the appropriate
records. Instead of fully synthetic data, some real data2 was used based on the one
available on the LSV site (Laboratoire Spécification et Vérification; aircrafts and airlines
database). This makes the benchmark more likely to represent real-world scenarios.

It uses the most popular Java drivers for MongoDB and PostgreSQL: mongo-java-
driver and PgJDBC, respectively. The code for the actual tests lives in two files,
MongoFlightBenchmark.java and PostgresFlightBenchmark.java. Both databases are
generated using custom scripts, and the static data (flight schedules and airplane
information) is preloaded automatically, before tests are run.

The user transaction is designed to be simple, but to mimick as closely as possible a
real-world case where a user is buying an airplane ticket. It is also designed to span
multiple documents in order to exercise MongoDB 4.0’s new transactions features. The
transaction is composed of the following commands, to be executed in order, all within
a single transaction:

2 �The original benchmark generated very simple data. In particular, the flight number was
hard-coded to a constant value and the seats assigned were purely random.

      � For the benchmark that was developed, a separate table (or collection in MongoDB) was used to
load real data from the LSV site containing flight data, and another one with plane data. Data is
still very small (15K rows for the flight schedules, and 200 rows for the planes data).	

https://www.mongodb.com/transactions
https://gitlab.com/ongresinc/txbenchmark
https://www.mongodb.com/blog/post/introduction-to-mongodb-transactions-in-python
https://www.mongodb.com/blog/post/introduction-to-mongodb-transactions-in-python
https://github.com/jdrumgoole/pymongo-transactions
http://www.lsv.fr/~sirangel/teaching/dataset/index.html
https://mongodb.github.io/mongo-java-driver/
https://mongodb.github.io/mongo-java-driver/
https://github.com/pgjdbc/pgjdbc
https://gitlab.com/ongresinc/txbenchmark/blob/master/cli/src/main/java/com/ongres/benchmark/MongoFlightBenchmark.java
https://gitlab.com/ongresinc/txbenchmark/blob/master/cli/src/main/java/com/ongres/benchmark/PostgresFlightBenchmark.java
https://github.com/jdrumgoole/pymongo-transactions/blob/f73a1b366ff78aed13c870ee2e15ec87be6307ef/transaction_main.py#L70

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

13/46

	 1. �Select a random schedule from the table/collection. Join this (INNER JOIN in
PostgreSQL, $lookup with MongoDB) with the aircraft data to obtain the capacity
(seats) of the aircraft serving that schedule.

	 2. �Insert into a seats table a user id (random), the schedule relevant data and the date
(randomly generated).

	 3. �Insert into a payments table a reference to the seats table (user id) and the payment
amount (a multiple of the duration of the flight).

	 4. �Upsert (INSERT ... ON CONFLICT DO UPDATE ... for PostgreSQL) the corresponding
entry in the audit table that contains schedule, date and number of seats occupied
(needs to be incremented by one).

The date assigned to the seating entry is a fixed day so there were frequent conflicts
on concurrent transactions trying to update the entry in the audit table for the same
(schedule, date) pair. This is expected and allows the benchmark to also exercise
transaction aborts on high isolation scenarios, as well as concurrency and locking
management. It has been verified that benchmark costs are not dominated by contention
in this area. Appropriate indexes are created on PostgreSQL and MongoDB to optimize
search on the lookup tables.

The benchmark has been performed on a client-server architecture (the Java-based
benchmark tool as the client and the server being either PostgreSQL or MongoDB). Both
on the same cloud AZ (Availability Zone). The filesystem used was XFS in both cases,
with default options. MongoDB needs replica set to be enabled, even if running on a
single node, as it is required for transactions.

The benchmark reports on three main data sets:

	 • �Throughput (transactions per second). Tests were time-bounded (5 minutes).

	 • �Transaction retries, converted later to % over total transactions.

	 • �Percentiles (latency) of the transactions.

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

14/46

MongoDB transaction limitations
MongoDB transaction support has several operational limitations that are well
documented. The most relevant ones are:

	 • �Transactions should run for shorter than 1 minute. While this time can be extended
via configuration, it is recommended not to do so. Long transactions have not been
exercised as part of the benchmark, but this could have been done with the developed
software3.

	 • �The oplog for the transaction cannot be larger than 16MB. That means that the
transaction will fail if it inserts, modifies or deletes a lot of documents, and that
changed information — formatted as an oplog, which is more verbose than the
original changes — exceeds 16M.

	 • �Write conflicts. MongoDB transactions are run in such a way that it may be frequent
that two concurrent transactions experience write conflicts. When this happens,
MongoDB will abort one of them. The user must retry the rolled-back transaction.
This effect was found to be more frequent on MongoDB than PostgreSQL running
at an equivalent isolation level (SERIALIZABLE). This is listed here as a limitation,
because it puts burden on the user and lowers performance.

	 • �Transactions are not yet available on sharded clusters4. This is not relevant on this
benchmark.

Discussion on transaction isolation levels
The “I” of ACID specifies the isolation level. Classical single-node isolation levels are
well documented. The choice of a given isolation level has, however, a profound impact,
both in terms of performance and, more importantly, on the data guarantees that the
database will provide to the application.

MongoDB without transactions operates on an equivalent READ UNCOMMITTED
isolation level. This isolation level is very weak and — apart from the obvious effects, like
single-documents operations only, non-serializable operations — may cause significant
undesirable behaviors, like:

	 • �Inconsistent reads. The data you read is not “frozen” and may contain the results of
concurrent operations as part of the result set.

3 �The software supports a parameter –booking-sleep that makes the transaction sleep for some
amount of seconds. It was set to 0 for the benchmark results shown here.

4 �MongoDB announced support for transactions over sharded clusters for the upcoming MongoDB 4.2.

https://docs.mongodb.com/manual/core/transactions-production-consideration/
https://docs.mongodb.com/manual/core/transactions-production-consideration/
https://docs.mongodb.com/manual/core/replica-set-oplog/
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://docs.mongodb.com/manual/core/read-isolation-consistency-recency/
https://docs.mongodb.com/manual/core/read-isolation-consistency-recency/

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

15/46

	 • �Skipped documents. A document being updated may not show as part of the query
result, when it should.

	 • �Reads of data that will later be deleted from the database.

Note that these effects may happen even on single-node configurations. With
transactions, however, MongoDB does provide the equivalent of SERIALIZABLE isolation
level, the strictest single-node isolation level. This is not always the most desirable level,
as it reduces performance and produces potential transaction rollbacks that need to be
re-executed. It would be desirable to implement other intermediate isolation levels.
Performance characteristics of this isolation level, in comparison with PostgreSQL, are
the primary concern of this benchmark.

The following table describes the isolation levels, their potential associated data
phenomena, and which ones are supported by each database:

MongoDB Postgres Isolation level
Dirty
reads

Lost
updates

Non-repeatable
reads

Phan-
toms

without
transactions

Read
Uncommitted

Read
Committed

Repeatable
Read

transactions Serializable

Red cells denote possible data effects under the given isolation level. Green cells denote
protection from the data effects at this isolation level. On the left side of the table,
white cells indicate supported isolation levels, and black indicates unsupported ones.

MongoDB is exposed to all of the possible undesirable data phenomena unless it is run
with transactions, in which case it is protected against all of them. PostgreSQL offers
more granular choice to the user, with three isolation levels directly implemented.

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

16/46

MongoDB emphasizes heavily that data modeling is required. And certainly these effects
can be avoided by denormalizing all the data and using the data modeling to embed
all related data into the “parent” document. Since single-document operations are ACID
atomic even when not using transactions, this is free from the phenomena described.
However, this limits the choice of data modeling options if those phenomena want to
be avoided, and comes with its own disadvantages (data duplication, more storage and
I/O required, less flexibility to query related data, etc). In summary, MongoDB users can
choose between the following options:

	 • �Run multi-document operations without transactions. This exposes these operations
to the effects already described, like inconsistent reads, or interleaving operations.

	 • �Use the embed data modeling pattern everywhere, and leverage the fact that
single-document transactions are ACID. This may lead to other disadvantages like
data duplication.

	 • �Use transactions, and leverage the strong guarantees provided by a SERIALIZABLE
isolation level. This comes with some performance degradation, as it will be shown
on the benchmark results.

https://docs.mongodb.com/manual/core/data-model-design/

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

17/46

Benchmark results

Throughput
The following graph depicts the performance comparison between MongoDB running
transactions and PostgreSQL:

Concurrent clients PostgreSQL TPS MongoDB TPS
1 1,007 203
2 1,936 372
4 2,873 641
8 5,445 1,168

16 9,815 1,684
32 17,278 1,707
64 24,171 1,759

128 25,636 1,786
256 23,402 1,750

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

18/46

There are several relevant conclusions:

	 • �PostgreSQL is one order of magnitude faster than MongoDB under any level of
concurrency (between 4 and 15 times faster).

	 • �The server has 16 CPUs, and it can be seen that the performance maxes out around
128 concurrent threads, in both cases. There is always more room for concurrency
than the number of CPUs, while there is I/O or memory wait. But at higher levels
of concurrency th e performance drops, and latency increases notably (as will be
shown later). This is why a connection pooler for PostgreSQL is a good practice5.
Note than in any case PostgreSQL is still more than one order of magnitude faster
than MongoDB.

It could be argued that MongoDB is providing here higher isolation guarantees than
PostgreSQL, which is running on READ COMMITTED isolation mode. This is true;
but READ COMMITTED is the most used isolation level in PostgreSQL, and provides
enough guarantees against undesirable phenomena on many situations, including this
benchmark’s transaction.

5 �There is a deeper discussion about the necessity for connection pooling for PostgreSQL in the
OLTP Benchmark section.

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

19/46

However, the benchmark has been also repeated for PostgreSQL running on a directly
comparable isolation mode, SERIALIZABLE:

Concurrent clients PostgreSQL TPS MongoDB TPS
1 993 203
2 1,880 372
4 2,992 641
8 5,472 1,168

16 9,923 1,684
32 17,915 1,707
64 24,173 1,759

128 23,200 1,786
256 20,994 1,750

The results do not differ significantly from the previous benchmark (PostgreSQL is still
4-14x faster). It can be seen that PostgreSQL performs on SERIALIZABLE isolation mode
slower than on READ COMMITTED mode, which is expected since it provides higher
guarantees. But how can this be more precisely explained?

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

20/46

Under high levels of isolation, concurrency effects (however differently implemented)
may lead to the database having to abort one transaction when two transactions
have a write conflict. This leads to the user having to retry the transaction, which
obviously decreases performance. What is the number of retries experienced during this
benchmark, for both databases?

PostgreSQL MongoDB
Concurrency # retries # retries/s % ret/txs # retries # retries/s % ret/txs

1 0 0 0% 0 0 0.0%
2 38 0 0.0% 8 0 0.0%
4 162 1 0.0% 30 0 0.0%
8 608 2 0.0% 148 0 0.0%

16 2,152 7 0.1% 453 2 0.1%
32 9,466 32 0.2% 638 2 0.1%
64 25,970 87 0.4% 964 3 0.2%

128 35,545 118 0.5% 1218 4 0.2%
256 36,903 123 0.6% 2903 10 0.6%

The table shows the absolute number of retries, the frequency of them (retries per second)
and the percentage they represent over the total number of processed transactions.
Note that under READ COMMITTED mode, PostgreSQL experienced no retries (as it is
expected).

The number of retries grows with the concurrency (the probability of collision grows).
This decreases performance, as can be seen, and shows also increased latency. The
benchmark program developed has several tunable parameters that may increase or
decrease the probability of collision:

	 • �booking-sleep: introduces a sleep within the transaction. Value used: 0.

	 • �day-range: specifies the number of days of time span all bookings are made. Value
used: 1.

Future work may involve repeating the test introducing some sleep (to increase conflicts)
and/or broadening the day range (to decrease them).

It is interesting to note that at the maximum concurrency level, PostgreSQL and
MongoDB experience approximately the same amount of retries when considered as
a percentage over the total successful transactions. Since the probability of collision
increases (possibly exponentially) with the effective number of transactions processed,
it follows that MongoDB is more eager to retry transactions. This is consistent with the

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

21/46

expectation set on MongoDB’s documentation about transactions and locking, which
states that “by default, transactions waits up to 5 milliseconds to acquire locks required
by the operations in the transaction. If the transaction cannot acquire its required locks
within the 5 milliseconds, the transaction aborts”. This behavior can be changed by
setting the maxTransactionLockRequestTimeoutMillis parameter.

Latency
Other than raw throughput, what is the user-perceived latency of the transactional
operations for this benchmark? If used for an OLTP application which is sensitive to
latency (like most e-commerce6 and many other applications), the user-perceived
latency will be a sum of the database latency and the application and network layer
latencies. If multi-document transactions are required (like in an airplane reservation
systems, simulated by this benchmark); and/or when high levels of isolation other than
READ UNCOMMITTED are required, what are the observed latencies on both databases?

6 A usually quoted number is that every 100ms of latency cost Amazon 1% in sales.

https://docs.mongodb.com/manual/core/transactions-production-consideration/#transactions-and-locks
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

22/46

The following graphs and data represent transaction latency and their percentiles,
shown for PostgreSQL with READ COMMITTED (default) isolation level. 50% indicates
the median latency (half of the requests are faster than this number). 95%, 99% and
99.9% represent the corresponding percentiles (e.g. the percentile 99.9% is the lower
bound of the latency of 1 every 1,000 transactions).

Note that the vertical axis is logarithmic.

Concurrent
threads

PostgreSQL percentiles (READ COMMITTED) (ms)
50.0% 95.0% 99.0% 99.9%

1 1.0 1.1 1.2 1.7

2 1.0 1.2 1.3 2.0

4 1.4 1.7 1.8 3.3
8 1.5 1.8 1.9 4.0

16 1.7 1.9 2.1 5.5
32 1.8 2.3 2.8 7.5
64 2.5 3.8 5.7 11.7

128 4.5 8.4 11.6 26.9
256 9.3 21.1 34.9 184.5

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

23/46

Below are the same results but for PostgreSQL running on SERIALIZABLE isolation
level.

Concurrent
threads

PostgreSQL percentiles (SERIALIZABLE) (ms)
50.0% 95.0% 99.0% 99.9%

1 1.0 1.1 1.2 1.5
2 1.0 1.2 1.4 2.2
4 1.3 1.7 1.8 3.6
8 1.5 1.8 1.9 4.1

16 1.6 1.9 2.1 5.3
32 1.7 2.2 2.7 7.0
64 2.5 3.7 5.1 10.1

128 4.8 10.6 14.2 26.7
256 7.4 27.1 40.6 180.4

PostgreSQL latencies, for both READ COMMITTED and SERIALIZABLE are quite reasonable,
well under 50ms for the 99% percentile. Only 1 out of every 1,000 transactions may
experience latencies of 180 ms, for 256 concurrent threads. Half of all the transactions
(median) are processed in less than 10ms, under any concurrency level. Minimum latency
is under 1ms.

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

24/46

As expected, SERIALIZABLE incurs in higher latencies, in general, but it is not very
significant.

Now let’s look at the latency results for MongoDB:

Concurrent
threads

MongoDB percentiles (ms)
50.0% 95.0% 99.0% 99.9%

1 4.7 8.3 8.9 9.6
2 5.2 8.9 9.6 12.5
4 5.9 11.4 14.2 15.4
8 6.6 12.0 14.8 16.7

16 9.3 15.9 17.6 23.2
32 17.6 33.8 42.2 53.5
64 34.1 66.1 84.4 109.1

128 68.7 131.6 170.9 228.6
256 143.7 278.9 377.5 505.4

MongoDB latencies are significantly worse than PostgreSQL’s. MongoDB’s median
latency is 5-20 times higher than that of PostgreSQL; and 99 percentile is 7-17 times
worse. MongoDB minimum median latency is 5ms in the best case (without concurrency)
while spikes to more than 100ms for 256 concurrent threads (while PostgreSQL is keeping
the median latency below 10ms). 99 percentile spikes to more than quarter a second with
256 concurrent threads, and only stays below 100ms for 64 concurrent threads or less.

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

25/46

// OLTP BENCHMARK

Benchmark description
The goal of this benchmark is to compare both databases under an OLTP (Online
Transaction Processing) scenario. In OLTP, a high number of operations, though small
in nature (typically single-row queries supported by an index, or single-row change
operations) are typically performed by a potentially large number of concurrent users. It
is, arguably, the most sought-after use case for MongoDB and one of the most commonly
used ones for PostgreSQL too.

To perform this benchmark the well-known sysbench tool was used. Sysbench is a
scriptable multi-threaded benchmark tool based on LuaJIT, extensible via LUA scripts.
It was originally developed to perform system benchmarks, and included support for
MySQL initially. It now has native PostgreSQL, and there is a sysbench-mongodb-lua
script that wraps and makes it work under MongoDB. It could be argued that the quality
of the Lua driver for both systems may differ. However, the benchmark runs were reliable
and consistent, and hence this benchmark, one of the few that are relevant in terms of
the data model and that support both databases7, was used.

Benchmarks conducted with this tool do not exploit transaction capabilities in MongoDB.
They also do not perform complex queries that would arguably work better on relational
schemas. Sysbench creates a schema with an user-defined number of tables/collections
(created with the sbtest* prefix). It also creates the correspondent indexes on their ID
columns. The document or row structure has an id, k (integer), c (slightly bigger text),
pad (text). Note that this test do not use transactions in MongoDB (and consequently run
effectively) under READ UNCOMMITTED isolation, whereas PostgreSQL runs under its
default isolation level, READ COMMITTED.

Several different tests have been performed, comprising several different dimensions
to analyze:

	 • �Dataset size (small dataset, 2-4GB, fitting in memory, called “FIT”; and larger dataset,
around 2TB, obviously not fitting in memory, called “XL”).

7 �Future work may involve writing one OLTP benchmark from scratch that would support both
databases. It could be based on a real use-case (like the Social Data Reference Architecture, a
MongoDB application used for performance regression testing), but exploiting the real capabi-
lities of each database, as if the program was designed specifically for each of the databases. It
would be a fair benchmark in the sense that the same operations and data are used, but possi-
bly internal representation and data modeling changes, being adapted to the best patterns and
capabilities of each database.

https://en.wikipedia.org/wiki/Online_transaction_processing
https://en.wikipedia.org/wiki/Online_transaction_processing
https://github.com/akopytov/sysbench
https://github.com/Percona-Lab/sysbench-mongodb-lua
https://github.com/mongodb-labs/socialite

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

26/46

 	� Both FIT and XL in the automated platform used SSD backed storage, with 1000 and
5000 guaranteed IOPS (io1) respectively. This has been done this way to simulate
real-world scenarios that are cost-sensitive to storage costs.

	 • �Filesystem (XFS or ZFS8).

	 • �Read/write work split. To scenarios considered: 95/5 and 50/50 (reads to writes).

	 • �Several different number of connections to the database, to simulate different levels
of concurrency.

In total, many dozens to hundreds of tests have been run, all automatically, including
result collection, thanks to the developed automated platform for benchmarking, as part
of this project.

Initial considerations

Dataset sizes on-disk
After the dataload phase of the sysbench benchmark, MongoDB and PostgreSQL sizes
for the two datasets are:

Engine XFS ZFS
MongoDB FIT 2.5 GB 1.9 GB
PostgreSQL FIT 6.1 GB 4.5 GB
MongoDB XL 2.0 TB 1.8 TB
PostgreSQL XL 2.5 TB 2.1 TB

There are two quick conclusions here: PostgreSQL requires more disk space than
MongoDB for the same data set; and ZFS offers good compression, even on MongoDB.

PostgreSQL number of connections and connection pooling
PostgreSQL architecture is based on a process model, where a new process is run per
every new connection. Since one process is served at a time by a maximum of one CPU
core, the theoretical maximum number of connections of a PostgreSQL database is equal
to the number of cores, assuming the connections are fully utilizing the CPU cores due

8 �The ZFS filesystem was used in a simple configuration, with compression enabled, but no read nor
write cache configured, that would have leveraged the ephemeral NVMe disks available on the
instances. This is left for a future benchmark. The main reason for this is that the path of the ephe-
meral disks on spot instances seems to change over time, making test automation much harder.

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

27/46

to high activity. For this benchmark, using m5.4xlarge instances with 16 CPUs, this would
mean a maximum number of 16 connections.

In reality, that number of connections is typically a multiple of the cores. Despite having
all the cores using a CPU, they are oftentimes waiting on I/O (which databases do a lot)
or even other interrupts. This allows the OS, by using the time-sharing mechanism, to
swap out and in other processes that can use the CPU while others are waiting. On top
of that, if a given connection is not fully utilizing the session (i.e., instead of continuously
executing queries it is waiting on the application to perform other tasks, for example),
even more concurrent connections may be thrown to the database.

On this presentation, OnGres proposed a formula to estimate the optimal number of
connections to a PostgreSQL database, based on the above factors:

where the % of utilization is close to 100% if the connection is just opened, queries
executed non-interactively and connection released, and most typically a 50-75%; and
the scale factor is a factor dependent on the effective I/O and other waits, and is typically
anywhere between 2-8 (smaller on systems with better I/O, like NVMe).

For this benchmark, let’s assume the utilization factor is high (90%; the benchmark
is continuously executing queries), so the optimal performance is achieved, probably,
according to this formula, somewhere between 27 and 53 connections.

Why is this relevant, anyway? It turns out this determines the optimal performance.
For the sysbench benchmark, and measured in increments of 50, it was experimentally
determined that 50 connections was the optimally performing number of connections
(which matches the expectation from the previous formula).

So operating on a higher number of connections may lower performance. How much?
It depends on the workload, but for some patterns, it may be significant. There are two
main factors that contribute to this effect:

	 • �OS scheduling overhead and cache trashing. The former is only noticeable when the
number of connections is very high, probably in the order of thousands. But it can be
measured indirectly through context switches, for example.

https://speakerdeck.com/ongres/postgresql-configuration-for-humans

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

28/46

	 � Cache trashing occurs by the way in which PostgreSQL works with the shared
buffers area. This area is where all buffer data is read/written by the processes,
and follows a LRU algorithm. If this area is scarce (compared to the whole data set),
many processes may end up on contention to it, paging in and out data that might be
still required by other processes. In other words: this cache area is shared by fewer
processes at a time, avoiding as much as possible ill effects of one process into
another one.

	 • �Local per-process catalog cache. Each PostgreSQL process caches some catalog
table information. This amounts a few MB of RAM (7-10 MB) per process. If the
number of connections is configured in the thousands, this quickly adds up to dozens
of hundreds of GB of RAM, plus all the rest of the memory required for database
operation.

So for PostgreSQL it is very important to properly tune the number of connections,
and keep it close to the ideal operating point. Initial measurements for the sysbench
benchmark have shown that PostgreSQL performance can degrade up to one order
of magnitude when the number of client connections grows to a large multiple of the
optimal range.

Does this mean that PostgreSQL cannot handle more concurrent users? Absolutely not.
The key is to use connection pooling. The standard way of accomplishing this is to use a
PostgreSQL connection pooler like PgBouncer. A connection pooler can maintain a lower
number of connections to the database (operating on a number of connections close to
the optimal range) and will either queue excess transactions (but still accept them; this
is called session mode) or multiplex them (called transaction mode) to create the net
effect of many more available connections to the database. Contrary to conventional
wisdom, this does not increase latency over a higher number of direct connections to
PostgreSQL: While some user connections have some added latency due to waiting, the
significantly faster processing of the in-flight queries compensates for this. Overall,
using a connection pooler has the following effects on direct connections to PostgreSQL:

	 • �Keep PostgreSQL operating close to the optimal range across almost any number of
incoming connections, effectively smoothing out performance variations.

	 • �Keep query latencies within reasonable bounds, not growing exponentially when
the number of connections is very high.

	 • Alleviate memory pressure due to local process cache.

	 • �Obviously, allow for any number of concurrent connections, making it almost
transparent to the user that there is an optimal number of connections from the
connection pooler to the database.

https://en.wikipedia.org/wiki/Connection_pool
https://pgbouncer.github.io/

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

29/46

One of the goals is to simulate benchmark conditions that are close to that of production
environments. It is explained here, and a well-known anti-pattern to run PostgreSQL
without connection pooling. Hence the results presented for the OLTP benchmark either
include a PgBouncer in front of PostgreSQL or, if raw results are presented, they are so
under the number of connections (determined to be 50) where PostgreSQL operates
optimally, since that would be the setting used in production, with a connection pooler in
front. Obviously, PostgreSQL and MongoDB are always compared with the same number
of concurrent connections.

And what about MongoDB? Is its performance changing with the number of connections?
This is not necessary due to MongoDB’s architecture, which uses a lighter weight
threading model. On top of that, MongoDB client driver includes an automatic connection
pool. Hence, it is not necessary to use an explicit connection pool in front of MongoDB,
and the results are more stable across a different number of connection users.

Benchmark results
Each benchmark has been run five times for each configuration (test type, file system,
load option and number of connections), averaging the results for the three intermediate
values.

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

30/46

Fit in memory (few GB dataset)
The benchmark was performed on both XFS and ZFS filesystems. For the 50 connections
result, comparing PostgreSQL and MongoDB, the observed performance is the following:

XFS ZFS
95/5 50/50 95/5 50/50

PostgreSQL 2,603 2,569 2,424 2,301
MongoDB 929 924 909 730
ratio (speedup) 2.8 2.8 2.7 3.2

This result may come as a surprise. It may have been expected MongoDB to outperform
PostgreSQL, as MongoDB it is well-known to perform well on OLTP operations when
data fits in memory and accesses are indexed. But PostgreSQL is 2.7-3.2 times faster,
depending on the test and read/write workload. There are two possible reasons:

	 • �The operations performed by sysbench are not just reading or inserting a single
record. But more resemble a closer-to-reality scenario where few bits of data need
to be processed on more than one table/collection. Note that despite the fact that
sysbench combines more than one operation, it does not uses transactions (just
grouped operations).

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

31/46

	 • �PostgreSQL has been driven to its optimal performance point by the use of PgBouncer,
as explained before. This is not an unfair advantage to PostgreSQL: MongoDB drivers
effectively perform the same benefit for MongoDB; and most production PostgreSQL
deployments use a PgBouncer.

It is quite relevant that MongoDB sports a significantly higher CPU usage. The following
graph shows CPU usage over time, on a graph that included different tests varying the
number of connections:

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

32/46

It has been explained in great detail that PostgreSQL performance depends heavily on
either having a connection pool in front or choosing the right number of connections. For
full disclosure, the following graph and data table show the performance of PostgreSQL,
MongoDB and PostgreSQL + PgBouncer with a varying number of connections for this
same FIT benchmark on XFS for a 50/50 read/write load:

Concurrent connections
50 100 150 200 250 300

PostgreSQL 2,569 332 183 147 127 121
MongoDB 924 889 872 867 856 828
PostgreSQL+PGB 2,779 2,714 2,880 2,881 2,832 2,860

PostgreSQL performance clearly drops significantly once the number of connections
surpasses that of the reference formula. However, once PgBouncer is fronting PostgreSQL,
it counters this effect, driving PostgreSQL to operate on its optimal performance point
for any number of connections. For this test, if connection pooling were totally discarded,
MongoDB would significantly excel in all cases except for the optimal performance point,
where PostgreSQL would beat MongoDB by a significant margin.

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

33/46

Does the use of PgBouncer have an impact on the CPU consumption, or does have any
other adverse effects? As for CPU usage there is an slightly increase, but not significant,
especially when compared with MongoDB:

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

34/46

MongoDB on ZFS
Watching the performance test’s evolution over time, it was brought to our attention
sudden drops in MongoDB performance, especially when doing the 50/50 test, that are
hard to perceive once averaged as a final result. They look like:

MongoDB is represented by the grey bars. The others are not relevant for this analysis.
As it can be seen, there are some periodic drops in performance, close to 0 (the Y axis is
operations per second), that could be due to some more or less periodic stall, or stop-
the-world flush to disk.

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

35/46

This suboptimal behavior in MongoDB is not mentioned directly in the documentation,
although WiredTiger strongly recommends XFS over others -- ext4 mentioned9. To
verify this behavior, a similar test was performed to record the operations latency, in
milliseconds, at the 95% percentile (meaning that 5% of operations were slower than
the numbers shown), and they have many periodic spikes:

Grey and green bars represent the same benchmark, just performed at two different
runs. The results are the same: The more or less periodic stall translates directly to the
very spiky 95% percentile of operations latency.

Because of this finding the ZFS results may be questionable, and it was decided not to
use ZFS in the large dataset benchmarks.

9 �Details of this can be found at MongoDB production notes.

https://docs.mongodb.com/manual/administration/production-notes/

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

36/46

Dataset exceeds available memory (2 TB dataset)
This test was only performed in XFS, after the experienced issues with MongoDB on ZFS.
On the PostgreSQL side, it also performed better with 50 connections, as it was for the
in-memory test. For this number of connections, comparing PostgreSQL and MongoDB,
the observed performance is the following:

95/5 50/50

PostgreSQL 2,433 2,211
MongoDB 96 51
ratio (speedup) 25.3 43.4

As can be seen, PostgreSQL remains much faster than MongoDB. But the difference
significantly widened: from 2-3x to 25-40 times faster.

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

37/46

What is the effect here of the number of connections on PostgreSQL?

Concurrent connections
50 100 150 200 250 300

PostgreSQL 2,433 334 191 138 116 123

MongoDB 96 81 82 86 96 48

PostgreSQL+PGB 2,709 2,686 2,707 2,670 2,827 2,839

The following conclusions may be derived from the results:

	 • �PostgreSQL performance is very similar irrespective of the dataset size. This means
that buffering algorithms are very good, and are able to keep the relevant dataset in
memory.

	 • �MongoDB performance degrades significantly when data does not fit in memory.

	 • �For this benchmark, PostgreSQL is faster than MongoDB even when it is operating
far from its optimal regime (at higher number of connections).

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

38/46

// OLAP BENCHMARK

Benchmark description
OLAP stands for Online Analytical Processing and is typically used for reporting, business
intelligence and data mining. This benchmark aims to provide a performance comparison
between MongoDB and PostgreSQL for simple reporting scenarios involving data
produced by OLTP workloads.

Data used consists of JSON documents from the GitHub Archive. This JSON data is imported
into both MongoDB and PostgreSQL (using the jsonb datatype). To import the data, a set
of scripts were developed into an automated platform that will repeat the test several
times on different data sizes, from scratch, in a clean and controlled environment. All
the source code, automation and test details are the same as for the OLTP Benchmark
(including instance sizes and characteristics: Instance was a m5.4xlarge, with 16CPU and
62G RAM).

GitHub Archive is a project to record the public GitHub timeline, archive it and make it
easily accessible for further analysis. GitHub Archive provides 20+ event types, which
range from new commits and fork events, to opening new tickets, commenting, and
adding members to a project. GitHub Archive files are served over HTTP. This dataset
was used as it provides significant advantages:

	 • �No need to generate the JSON data.

	 • �Free and Public info and access.

	 • �Real user info to develop, analyze with aggregation and run OLAP queries.

	 • �Enough info volume size to populate a database and run meaningful queries.

Each archive contains JSON encoded events as reported by the GitHub API. Raw data can
be downloaded and processed - e.g. write a custom aggregation script and import it into
a database, as was done here.

The list of events and JSON keys are pretty extensive, see Schema.js and Event Types to
dive deep into JSON document and GitHub API. It is relevant about the JSON data that:

	 • �The content of the “payload” field is different for each event type and may be updated
by GitHub at any point.

	 • �The content of the “other” field is a JSON string which contains all other data provided
by GitHub.

https://en.wikipedia.org/wiki/Online_analytical_processing
https://www.gharchive.org/
https://www.postgresql.org/docs/11/datatype-json.html
https://developer.github.com/v3/activity/events/types/
https://github.com/igrigorik/gharchive.org/blob/master/bigquery/schema.js
https://developer.github.com/v3/activity/events/types/

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

39/46

The dataset used for the OLAP benchmark imported from the GitHub Archive within the
data range from 2015-01-01 to 2015-12-31 (1 year range time), representing 212,222,001
(212M) records.

Query scope and projection
With all this background about GitHub Archive, we wrote 4 queries to run the OLAP
Benchmark, as shown below:

	 • �Query A: Return repositories ordered by most opened issues.

	 • �Query B: Return git event type ordered by quantity (most frequent first).

	 • �Query C: Return the top 10 most active actors.

	 • �Query D: Return repositories that have more than two comments and a specific
event type, ordered by average comments descending.

As a best practice, we have picked queries that fairly accurately represent real use-case
scenarios where the database is asked for relevant BI (Business Intelligence) information.

The following are the actual code used to perform these queries in the tested systems.

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

40/46

Query A
Return repositories ordered by most opened issues.

PostgreSQL:

SELECT data->’repo’->>’name’, count(*)
FROM github2015
WHERE (data->>’type’) = ‘IssuesEvent’ AND (data->’payload’->>’action’) =
‘opened’
GROUP BY 1
ORDER BY count DESC

MongoDB:

db.github2015.aggregate(
 [
 { $match: {
 $and: [{ type: “IssuesEvent”} , { “payload.action” :
“opened” }] }
 },
 { $group: { _id: “$repo.name”, total: { $sum: 1 } } },
 { $sort: { total: -1 } }
],
 { allowDiskUse: true, cursor: { batchSize: 100000000 } }
)

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

41/46

Query B
Return git event type ordered by quantity (most frequent first)

PostgreSQL:

SELECT data->>’type’, count(*)
FROM github2015
GROUP BY 1
ORDER BY count DESC

MongoDB:

db.github2015.aggregate(
 [
 { $group: { _id: “$type”, total: { $sum: 1 } } },
 { $sort: { total: -1 } }
],
 { allowDiskUse: true, cursor: { batchSize: 100000000 } }
)

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

42/46

Query C
Return the top 10 most active actors

PostgreSQL:

SELECT data->’actor’->>’login’ as actor, count(*)
FROM github2015
GROUP BY actor
ORDER BY count DESC
LIMIT 10

MongoDB:

db.github2015.aggregate(
[
 { $group: { _id: “$actor.login”, events: { $sum: 1 } } },
 { $sort: { events: -1 } },
 { $limit: 10 }
],
 { allowDiskUse: true, cursor: { batchSize: 100000000 } }
)

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

43/46

Query D
Return repositories that have more than two comments and a specific event type,
ordered by average comments descending.

PostgreSQL:

SELECT data->’repo’->>’name’,avg((data->’payload’->’issue’->’com-
ments’)::int) as comments
FROM github2015
WHERE data->>’type’ = ‘PushEvent’
AND (data->’payload’->’issue’->’comments’)::int IS NOT NULL
GROUP BY 1
ORDER BY 2 DESC

MongoDB:

db.github2015.aggregate(
 [
 { $match: { “type”: “PushEvent”, “payload.issue.comments”: { $gt
: 2 } } },
 { $group: { _id: “$repo.name”, avg: { $avg: “$payload.issue.com-
ments” } } },
 { $sort: { avg: -1 } }
],
 { allowDiskUse: true, cursor: { batchSize: 100000000 } }
)

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

44/46

PostgreSQL specifics
Postgres is tuned with 1GB work_mem and 12GB shared_buffers. The dataset ended up
in around 340G of used disk space.

For the set of queries in this benchmark, the following indexes were created:

CREATE INDEX ON github2015 ((data->’repo’->>’name’));
CREATE INDEX ON github2015 ((data->’payload’->>’action’));
CREATE INDEX ON github2015 ((data->>’type’));
CREATE INDEX ON github2015 ((data->’actor’->>’login’));
CREATE INDEX ON github2015 ((data->’payload’->’issue’->’comments’))

The queries used in the current benchmark are located at the corresponding script in the
benchmarking platform here.

MongoDB specifics
Disk space required for the dataset was 206GB. Note that MongoDB’s (WiredTiger’s)
compression reduced significantly disk space requirements as compared to PostgreSQL
(340GB).

Equivalently to PostgreSQL, the following indexes were created:

db.github2015.createIndex({type:1})
db.github2015.createIndex({“repo.name”:1})
db.github2015.createIndex({“payload.action”:1})
db.github2015.createIndex({“actor.login”:1})
db.github2015.createIndex({“payload.issue.comments”:1})

Benchmark queries can be found in the platform repository.

https://gitlab.com/ongresinc/benchplatform/blob/master/terraform/modules/compute_set/files/run/client/postgres-github.sh
https://gitlab.com/ongresinc/benchplatform/blob/master/terraform/modules/compute_set/files/run/client/mongo-github.sh

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

45/46

Benchmark results
The queries are run several times and averaged. Total query execution time is measured
in seconds. Lower is better. The results for the given dataset (212M records) are the
following:

Queries PostgreSQL MongoDB % speedup
(S-F)/S

Query A 1h 28m 15s 1h 8m 44s 22.11%
Query B 41m 03s 1h 13m 3s 43.80%
Query C 48m 37s 1h 14m 25s 34.66%
Query D 1h 07m 23s 2h 23m 44s 53.12%

As per the results above, it can be seen that PostgreSQL outperforms MongoDB by a 35-
50% on three queries and is only slower on the first query, by a 22%.

For this test, the whole 2015 year data was used. When testing in incremental stages,
with a few months of data, MongoDB outperformed PostgreSQL in all queries when the
dataset was small enough to fit in memory (a few GB). This is not a surprising result,
but not one very realistic in production environments, where OLAP data would weigh in
the order of dozens of Tbs or even more. If, however, your dataset fits in RAM, consider
using MongoDB for faster performance. Conversely, when dataset is bigger than RAM,
PostgreSQL performance advantage grows as the dataset becomes bigger.

A typical BI (Business Intelligence) application would include lookup tables (typically
small) that would need to be joined with the main table (which as has been explained
for the transactions benchmark is slow on MongoDB) or they would need to be de-
normalized into the main table (adding change performance on the OLTP operations
and disk space). It is expected that PostgreSQL would have been performed even better
than MongoDB in this case. Moreover if a BI tool is used that speaks SQL (as most of
the ecosystem is), like Tableau, MicroStrategy or Qlik, it would require to use MongoDB’s
BI Connector. But this product is not open source, and its license explicitly prohibits to
publish benchmark results.

Based on this discussion, a series of possible future additional benchmarks are proposed
to analyze other vectors for this OLAP benchmark:

	 • �Consider using ZFS with compression enabled for PostgreSQL. This could reduce the
disk space used by PostgreSQL and do a more fair comparison in terms of required
I/O. It is expected that PostgreSQL would perform better. MongoDB would probably
not (WiredTiger already has compression).

https://docs.mongodb.com/bi-connector/master/
https://docs.mongodb.com/bi-connector/master/

PERFORMANCE BENCHMARK
POSTGRESQL / MONGODB

46/46

	 • �Transform jsonb queries in PostgreSQL to a set of normalized relational tables.
Similarly to what (www.torodb.com) does automatically, jsonb-based queries may
be turned with a set of views or materialized views into relational tables, well-
normalized. Then, queries may be rewritten in “plain SQL”, by doing specific joins
based on the resulting schema. It is expected that in this case queries would run
significantly faster, up to 1-3 orders of magnitude faster, in PostgreSQL than in
MongoDB. For a more detailed explanation, see this post from ToroDB with detailed
benchmark data10.

	 • �Repeat the current benchmark with a several TB-sized dataset. If it would repeat the
observed trend, PostgreSQL performance advantage should widen.

10 �The benefits of transforming JSON data into a relational schema may be quite significant,
especially for OLAP type of queries. This normalization process benefits in several ways:

	 • �Only a percentage of the “collection” is scanned to satisfy a given query, whereas the whole
collection is scanned if data is in JSON format. Let’s assume a query is doing an aggrega-
te on some fields on a deeply nested sub-document. On a relational schema this deeply
nested sub-document would map to a separate table, which represents a small percentage
of the whole data. On the relational model, only this smaller table would be scanned for the
query, leading to potentially much more efficient queries.

	 • �As an added benefit to the previous one, if these derived tables (representing a nested
sub-document) are not present on all rows of the original JSON data, then these tables’
cardinality will be also lower than the original number of rows in the JSON data. Leading to
even faster queries –scanning less to much less rows of data.

	 •� Storage and I/O savings: the keys are frequently repeated. Once factored into the schema, a
percentage of the storage and I/O is saved.

https://www.torodb.com/
https://www.8kdata.com/blog/announcing-torodb-stampede-1-0-beta/
https://www.8kdata.com/blog/announcing-torodb-stampede-1-0-beta/

