
Security in Domain-Driven Design
Author: Michiel Uithol

Supervisors:
dr.ir. M.J. van Sinderen
dr.ir. L. Ferreira Pires
drs. T. Zeeman (Sogyo)
E. Mulder Ba (Sogyo)

Security in Domain Driven Design
By Michiel Uithol

ii

Security in Domain Driven Design
By Michiel Uithol

iii

Abstract
Application development is a process that becomes increasingly complex depending on
the intricacy of the application being developed. Development techniques and
methodologies exist to manage and control the complexity of this development process.
Amongst the techniques introduced to manage the complexity of the application
development process is Domain-driven design (DDD).

DDD prescribes a specific application of separation of concerns to the application model
into a domain model and DDD-services.
This Masters assignment investigates how to handle issues concerning the modelling
and implementation of authorization and authentication functionality in an application
developed according to the DDD principle of separating domain-related functionality
from domain-independent functionality. This means an application where security
functionality is located in a DDD-service.

The goal of this Masters assignment is to find design options to separate security from
domain-related functionality and provide guidelines for usage of these design options.
To find the best design options, the problem is explored and the levels of coupling
between DDD-services and the domain implementation are clarified.
Criteria for the application design phase are that the design should comply with the
DDD principle of separating domain-related functionality from domain-independent
functionality, and that the design should provide usability and efficiency when
implemented.

Two prototypes use Aspect-Oriented Programming (AOP) to separate security logic into
a DDD-service. AOP allows for cross-cutting concerns to be declared in a single place
called an aspect. This aspect is then applied in all the places this functionality is needed.

The implementation resulted in three prototypes:
1. A prototype with intermediary adapters that regulate interactions with the

domain implementation.
2. A prototype with AOP point-cuts aimed at intermediary adapters.
3. A prototype with AOP point-cuts aimed at the domain implementation.

After reviewing the prototype implementations, the recommendation is made for the
AOP implementation with point-cuts towards the domain implementation. This choice is
made based on the application structure and compliance with the criteria.

Security in Domain Driven Design
By Michiel Uithol

iv

Security in Domain Driven Design
By Michiel Uithol

v

Table of contents
Chapter 1 Introduction 1

1.1 Background 1
1.2 Problem Description 3
1.3 Goals 4
1.4 Approach 4
1.5 Report structure 5

Chapter 2 Domain-driven design and Security 7
2.1 DDD 7
2.2 State of the art 11
2.3 Coupling of services 14
2.4 Security service 16

Chapter 3 Case Study 18
3.1 Case study overview 18
3.2 Reference implementation: Security embedded in the domain model 21
3.3 Criteria for case study designs 23

Chapter 4 Security service design scenarios 25
4.1 Scenario 1: Security service as regular service 25
4.2 Scenario 2: Security embedded in the UI 28
4.3 Scenario 3: Security service encapsulating the domain model 31
4.4 Scenario 4: Security service as a gateway for the UI 34
4.5 Scenario 5: Security service as an adapter for the UI 36
4.6 Scenario 6: Security service integrated by AOP with adapters 39
4.7 Scenario 7: Security service integrated with AOP 43

Chapter 5 Security design implementations 46
5.1 Scenario selection 46
5.2 General implementation choices 49
5.3 Scenario 5 implementation: Security service as an adapter for the UI 49
5.4 Scenario 6 implementation: Security service integrated by AOP with adapters 51
5.5 Scenario 7 implementation: Security service integrated by AOP 56

Chapter 6 Measurements 59
6.1 Cyclomatic Complexity 59
6.2 Coupling Between Objects 61
6.3 Measurement comparison 64
6.4 Results 66

Chapter 7 Conclusion 68
7.1 Guidelines and recommendations 68
7.2 Evaluation 69
7.3 Future work 70

References 72

Security in Domain Driven Design
By Michiel Uithol

vi

Security in Domain Driven Design
By Michiel Uithol

1

Chapter 1
Introduction

This chapter starts by introducing the context of the investigation performed to analyse a
problem occurring in Domain-driven design (DDD).
After introducing the background information concerning DDD this chapter presents the
problems related to security in DDD. Based on the problem description the goals for this
investigation are clarified. Next, this chapter describes how these goals are achieved
within this Masters assignment.
This chapter’s role is to describe the context of this Masters assignment. This context is
used to clarify the objectives and approach.

1.1 Background
Application development is a process that becomes increasingly complex as the intricacy
of the application being developed increases. Development techniques and
methodologies have been defined to manage and control the complexity of this
development process. These methodologies and techniques are often based on specific
application models and the fact that models should facilitate the understanding,
implementation and maintenance of the application being developed. Amongst the
various techniques introduced to manage the complexity of the application development
process is Domain-driven design [EVAN03]. A short overview of other methodologies
and techniques is found later in this report.

Figure 1: The development process

Understanding of the terms used in the development process seen in Figure 1 is vital to
provide a clear description of DDD.
At the top level is the problem domain, which initially encompasses only a rough idea on
what the final application should accomplish. This rough idea is refined by producing a

Security in Domain Driven Design
By Michiel Uithol

2

document describing the set of requirements. This requirements specification is needed
before the design phase is started.
The design phase transforms these requirements into the application model that meets the
defined requirements. During this phase the requirements are adjusted according to
insights gained by producing the application model.
The second level of abstraction consists of the specification of the application model that is
used to represent the problem domain.
During the implementation phase an implementation is produced with functionality that
corresponds with the application model.
The third level of abstraction is the application implementation, which represents the code
structure and behaviour of the actual implementation.

DDD originates from the notion that the heart of the complexity of software
development lies within the problem domain itself. DDD presents guidelines for
applying separation of concerns to an application model and implementation. This
separation aims to move the focus in software projects to the deep issues of the problem
domain, namely the domain logic [DDDO] [EVAN03] [SDWZ07]. The domain logic is
also commonly referred to as business logic.
During the design phase, collaboration between developers and domain experts is
needed to attain the goal of creating a coherent application model expressed in a
ubiquitous language defined by the team itself [EVAN03 p.32]. In DDD, ubiquitous
language means ensuring the domain experts and software specialists communicate in
the same common language, thus enabling efficient and correct communications
between these team members.
In DDD the transformation from the problem domain into an application model results
in a specific layout in the application model. At this level the application model consists
of a domain model, containing domain-related functionality, and domain-independent
functionality. Domain-independent functionality is represented by different services that
facilitate the usability of the domain model. Therefore, the term ‘service’ has a special
meaning in DDD when compared to the use of this term in other architectures like
service-oriented architecture (SOA), as services represent domain-independent
functionality.
In the application implementation structure the separation between domain-
independent (service implementation) and domain-related functionality (domain
implementation) is maintained. On the implementation level this means the classes in
the domain implementation have no references to the classes and interfaces in the service
implementations.

Both transformations during the design and implementation phase are conducted in an
iterative manner. Changes made to the application implementation structure are also
reflected in the application model.

DDD introduces a level of robustness to requirement changes. Requirements changes are
far less likely to impact the domain logic. An example of this robustness is seen in a
banking application. A requirements change is unlikely to affect the domain structure,
consisting of accounts and how transfers between accounts are made.

Security in Domain Driven Design
By Michiel Uithol

3

Services however, are more likely to be the target of requirement changes. An example is
a new web-based front end that allows access to the domain implementation or another
type of database that is used to store the state of the domain implementation.

1.2 Problem Description
In some cases, the separation of concerns prescribed by DDD is difficult to achieve,
namely when functionality is considered which is domain-independent but which is
intrusive on and closely related to domain-related functionality.
These problems apply to security. Security is conceptually domain-independent
functionality, thus security should be modelled as a service in DDD. But security is hard
to separate from domain-related functionality in the implementation.
For the security service to function properly it needs to be intrusive on domain-related
functionality.

Two main problems arise when separating security into a service:
1. The security service must authorise actions that affect the implementation of

domain classes. This applies when these actions are initiated by other services.
The security service must be aware of these actions and be able to regulate them.

2. When reviewing security as a service within DDD, it is clear that when access
control is only based on the role of a user, security functionality can be located in
a security service with low coupling to the domain implementation.
However, when the state of the domain implementation affects access control,
decoupling security functionality becomes more problematic. An example of this
problem is a domain concerning contract management. A user must have the role
of manager in order to close a contract, this constraint can be enforced by the
security service.
However, if more complicated conditions need to be checked, like ‘Hiring
contracts can only be closed by HR-managers and sales contracts may only be
closed by Sales-managers’, the security service needs domain knowledge and
could be required to retrieve information, from the domain implementation to
enforce the security rules. Such a service is hard to decouple from the domain
implementation it secures.

From these problems the question arises whether it is feasible to separate security into a
service and which possibilities exist to implement this service. Strong coupling between
a service and the domain implementation contradicts the aim of DDD to have a low
coupling between services and the domain implementation, while maintaining high
cohesion between the objects inside the domain implementation or a service. Regular
solutions for the problem of strong coupling like using events or observer and
observable pattern are not feasible in the case where security is simply modelled as a
service, because the security service needs to authenticate users and authorise the actions
from other services before they can interact with the domain implementation.

Security in Domain Driven Design
By Michiel Uithol

4

1.3 Goals
This Masters assignment investigates how to handle issues concerning the modelling
and implementation of authorization and authentication functionality as a security
service in a DDD environment. The separation of security into domain-independent
functionality should be performed in such a manner that the benefits of DDD are
maintained.
For this Masters assignment the scope of security (containing audit, privacy,
authentication, trust, authorization etc.) is narrowed to the authentication and
authorization of users.

The first goal is to provide insight into the coupling of services in DDD and how services
are classified according to their behaviour.
The second goal is to find the best design options to separate security functionality from
domain-related functionality. The best design options are tested by creating a prototype
implementation. Prototype implementations should comply with the principles of DDD
while still providing usability and efficiency when implementing an application.
If multiple design options are found, the best design options must be implemented.
Evaluation of the design options is performed by reviewing the prototype
implementations that demonstrate the possibilities for assigning authentication and
authorisation functionality to a security service decoupled from the domain
implementation.
For these prototypes, guidelines are presented describing which implementation is
applicable for which situation.

1.4 Approach
The approach to reach the goals for this Masters assignment consists of four phases:
investigation, design, implementation and evaluation.

To clarify how DDD is applied in practice, we have investigated the terminology, inner
workings and benefits of DDD.
The knowledge gained from the investigation is used to describe a problem domain for a
case study. This case study has been used to compare the different design options.
The case study illustrates how DDD works in a practical environment. The case study
has also been used as a starting point to be able to compare new design and
implementation options.
From this case study, requirements for the design options have been derived.

In the design phase, possible design options to cope with the security concerns identified
in the case study have been derived. The design options describe the composition of the
application model. The application model describes how the domain-related and
domain-independent functionality cooperate. This phase has been partly a creative
process as the number of possible design options was not known in advance. Each
design option has specific benefits and concerns because of different manners of
cooperation between the domain-related and domain-independent functionality in the
design.

Security in Domain Driven Design
By Michiel Uithol

5

The design phase is followed by the implementation phase. The implementation phase
consists of two parts.

1. If there were more than three design options, the number has been reduced based
on the ranking of the design options. This ranking has been performed by using
criteria specified at the introduction of the case study. It was not feasible to
implement more than three variants of this case in the limited time of this
assignment.

2. The best design options were implemented for the case study described in the
investigation phase.

After the implementation phase, the implemented case studies were evaluated. The
different implementations have been compared on the compliance with the DDD target
situation in the case study as presented in the investigation. Measurements to determine
the complexity and clarity of the design and implementation experiences are also
factored into the evaluation. The evaluation phase also contains a comparison between
the different implementations by measuring the coupling between the security service
and the domain implementation.
Because each implementation solves the problems in a different way, the evaluation
could result in different prototypes options being recommended in different situations
and environments.

1.5 Report structure
The report structure reflects the four phases from the approach: investigation, design,
implementation and evaluation.

Chapter 2 describes a more detailed view of DDD. It explains the origin of DDD and its
relation to some other development techniques. It elaborates on the coupling between
the domain implementation and service implementations. It also contains an analysis of
the problems that occur when separating security into a service is presented.

Chapter 3 presents a case study that is used to clarify the implementation phase of the
development process. A reference implementation of the case is presented to illustrate
the usage of this case study. Criteria for the design options are defined based on the case
study.

Chapter 4 provides an overview of design options that can be used to structure the
application model. Differences in the design options occur due to use of different
techniques or due to a different choice for separation between domain-related and
domain-independent functionality. These design options are treated as different
scenarios, each with individual characteristics and trade-offs.

Chapter 5 combines the case from Chapter 2 with the design options presented in Chapter
4. This chapter describes the implementation phase and identifies possibilities and
problems with the design options. Before creating implementing the prototype

Security in Domain Driven Design
By Michiel Uithol

6

implementations, a selection is made in case more than three design options are defined
in Chapter 4.

Chapter 6 evaluates the measurements performed on the prototype implementations
from Chapter 5. The case study implementations are compared to the reference
implementation from Chapter 3. The results of these measurements and comparison is
analysed and the relations between the results are explained. Based on these results
guidelines for the usage of the scenarios are presented.

Chapter 7 contains the conclusion. This chapter presents a summary of the results of the
Masters assignment. A reflection on the total development process (investigation,
design, implementation and evaluation) is given in this chapter.

Security in Domain Driven Design
By Michiel Uithol

7

Chapter 2
Domain-driven design and Security

This chapter presents the background and terminology used in the application of DDD.
This chapter’s role is twofold. In the first place this chapter provides detailed
information about Domain-driven design and how it is applied. The second role is to
analyse the current problem with separating security into a service.

2.1 DDD
The content of this section is based on various DDD sources. The references for the
content are [DDDO] [EVAN03] [EVAN06] [SDWZ07] [WOLT05] [NILS06] [YDDD].

2.1.1 Principles
Application development is a process that becomes increasingly complex depending on
the intricacy of the application being developed. Amongst the various techniques
introduced to manage the complexity of the application development process is Domain-
driven design.

To more efficiently deal with requirements changes, complexity in the application needs
to be manageable. According to [BROO86], essential and accidental complexities exist.
Brooks argues that while essential complexity cannot be reduced because it is inherent to
the problem being solved, accidental complexity can be managed by design and
implementation choices. To manage the accidental complexity in the application model,
DDD uses the principle of separation of concerns. This principle is used to separate the
application model into a domain model, consisting of domain-related functionality, and
domain-independent functionality, which is represented by different services that
facilitate the usability of the domain model. Therefore, the term service has a special
meaning in DDD, when compared to the use of this term in other architectures like
service-oriented architecture (SOA). In DDD services represent domain-independent
functionality.
The separation of domain-related and domain-independent functionality in DDD is
based on the idea of applying separation of concerns to software development, which
dates back to the early 1970s [PARN72] [DIJK74].
At its core, DDD can be characterized as a specific style of applying OO programming.
The principle of separation of concerns is also related to the foundation of Object-
Oriented (OO) programming [WBMC03]. In the late 1970s OO was applied in Smalltalk
[SMAL08] by considering that “everything is an object”, in this way associating
properties and behaviour to individual classes.

During the design phase, collaboration between developers and domain experts is
needed. To ensure that domain experts and software specialists communicate in the

Security in Domain Driven Design
By Michiel Uithol

8

same terminology, a ubiquitous language is defined by the team. Ubiquitous language in
DDD stands for getting all team members, software specialists and domain experts, to
use the common language in diagrams, writing and speech. This ubiquitous language
enables the creation of a clear and understandable application model for all team
members.

In DDD, the key to controlling the complexity of the application model is to use a correct
and complete domain model. The creation of this correct and complete model is the
objective in DDD during the design phase. Correct means that the team members are
satisfied with the functionality that is incorporated and complete means that all domain-
related functionality is present in the domain model. Complete does not mean that the
domain model is a fixed, rigid or finished product after the design phase. Changes
introduced by decisions during the development phase are reflected in the domain
model. This means that the domain model remains centred and consistent with the
domain implementation during the entire development process.
Although not required, DDD is perfectly suited for performing the design and
implementation phases in an iterative fashion.

Applying the domain model correctly should result in a complex development effort
becoming more dynamic and more focused on the core issues of the problem domain.
This focus on the domain models results in increased separation of concerns in the
application model, illustrated by the loose coupling of services to the domain model.
This increased separation yields an application implementation that is more flexible,
making it easier to facilitate the addition of new requirements or features.
The aforementioned separation of domain-independent functionality into services is an
attempt to ensure the independence of the domain model from technology. Technology
means specific versions or types of databases or different UIs. Especially services like UIs
are susceptible to changes in technology and requirements.

Determining the separation between domain-independent functionality and domain-
related functionality is not a trivial task. The decision can be difficult because a lot of
functionality does not fit clearly into either category.
Deciding where functionality should be placed in the model is based on knowledge,
experience and common sense.
Thus, whether a specific piece of functionality should reside in a service or in the domain
thus varies, depending on the person making the decision.

Security in Domain Driven Design
By Michiel Uithol

9

2.1.2 Models
In [EVAN03] a layered application model is
used to show how DDD can be projected
onto a layered model (see Figure 2). The goal
of this layered model is to concentrate the
code related to the domain model in one
layer and isolate it from the user interface,
application, and infrastructure code.
Services can be present in any of these three
layers.
Each of these layers has a special purpose. In
contrast to regular layered models where
layers are only allowed to communicate
with the layers directly above and below,
the layers in this model are allowed to
interact in the direction of the arrows
without intervention of the intermediate
layers. The arrows show the direction of the
interactions between the different
components in the model. This means that
the components in the Domain layer are
unaware of the existence of the layers above
the Domain layer and have no references to
those components.

The four layers identified in Figure 2 are:
- The User Interface (or Presentation) layer is responsible for showing information

to the user and interpreting user commands.
- The Application layer is an optional layer that helps translate actions in order to

use the Domain layer. It does not contain any business rules or knowledge. This
layer is kept thin and has no state.

- The Domain layer represents the domain implementation. It contains the concept
of business information, business rules and the state of the current business
situation.

- The Infrastructure layer provides generic technical capabilities that support the
higher layers. Examples are data persistency and message exchange.

The layered model is unable to represent more services clearly than are currently
depicted. New services would be placed in the Infrastructure layer or User Interface
layer. More complex designs lose a lot of clarity when depicted in this layer model,
because different services would reside in one layer while their function could vary
distinctively.

Figure 2: DDD Layer model by Eric Evans
[EVAN03 p.68] [EVAN06 p. 29]

Security in Domain Driven Design
By Michiel Uithol

10

Within Sogyo the aim is to use a so-
called ‘sunflower’ model, as depicted in
Figure 3, where the domain-related
functionality is unaware of the services
outside the domain model. In contrast to
the layer model in Figure 2 the domain
implementation is also unaware of the
services in the infrastructure layer.
The sunflower model depicts the same
elements organised in another way,
where all elements can be mapped to the
layered model. The difference is that the
separate services are not depicted in one
layer but in separate entities
surrounding the domain model and the

domain model is unaware of the elements from the infrastructure layer.

The domain model is depicted in the centre of the application model to stress its
importance. The various services are depicted around the domain model. Choices are
made during implementation whether the services have references to surrounding
services and the domain classes. There is no clear consensus in the DDD community on
whether services are allowed to only have references to other services, thus not knowing
the implementation of domain classes.
The domain model remains the foundation of the design. The domain implementation
does not require any service to operate, the domain implementation is independent and
is able to operate standalone. Operating standalone has the advantage that for example
no persistency service is required to test and run the domain.
The double lines between the services and the domain model represent a ‘glue’ layer.
This glue layer is used to translate actions in order to use the domain classes. The glue
layer it is considered equivalent to the application layer in Figure 2.

2.1.3 Goals and benefits
Domain-driven design is not a goal in itself, but aims to provide the means to facilitate
easier maintenance, speed up development, and add flexibility and robustness to
requirement changes. The reasons behind these positive effects are related to the
separation between the domain model and the services that facilitate the use of the
domain model. During development, requirement changes are far less likely to impact
the domain model. New functionality is mostly contained in a few methods to be added
to the implemented domain classes. Services are more likely to need new functionality
and entire new classes or even a new service are introduced to provide new
functionality. Since changes to services impact a smaller part of the total development
process, this results in a decrease of the total impact of a requirement change.
Changes to business rules are more easily introduced because they are centralized in the
domain model. This centralisation inherently introduces a drawback, since changes in
the domain implementation can have an impact on all service implementations. All
services that interact with the changed domain class have to be checked for correctness.

Figure 3: DDD application model by Sogyo

Security in Domain Driven Design
By Michiel Uithol

11

Thus changes to the domain implementation can propagate throughout the services and
have a large potential impact.
Another benefit of applying the DDD principles to a project is increased testability of the
domain implementation. Increased testability is achieved because the domain
implementation operates independent from services. This independence facilitates the
testing of methods with unit tests. The independence from services also eliminates the
need for mock databases.

2.2 State of the art
This section describes technologies and techniques related to DDD and techniques that
are used within this thesis. Different development methodologies that are related to
DDD are discussed to be able to place DDD better within its context. Furthermore,
implementation techniques and measurement metrics that are relevant to this thesis are
clarified.

2.2.1 Development methodologies
DDD is not the only development technique or methodology that is defined to manage
and control the complexity of the development process. Examples of other related
techniques include Model-Driven Architecture (MDA) [MDA04] [HAYW04], Model-
Driven Development (MDD) [IBMR06] and Table-Driven Design (TDD) [FOWL02].
These techniques are shortly described here to indicate how they work and how they
influence the development process. These techniques are discussed because they are
related to DDD.
MDA is the Object Management Group (OMG) [OMG08] implementation of MDD. The
MDA concept is implemented by a set of tools and standards that can be used within an
MDD approach to software development. MDD describes concepts related to the
modelling of an application that are also applicable within DDD. However, in DDD the
model is closer to the code than in MDD.
TDD is a domain logic pattern described by Martin Fowler in [FOWL02]. TDD is used in
applications that are centred around databases and with data table representations that
are easily mappable on business objects.

Model-Driven Architecture and Model-Driven Development
Model-Driven Architecture (MDA) describes a set of viewpoints for defining models,
such as the Platform-Independent Model (PIM) and Platform-Specific Model (PSM).
Models from these viewpoints can be packaged as reusable assets. If there is a situation
in which some recurring business concepts can be applied across multiple applications
and implementation technologies, it can be valuable to invest the effort to create the PIM
and PSM models and any associated transformations, each of which may be a reusable
asset and stored in an asset repository [IBMR06](p541).
Objectives of MDA include separating business requirements and analysis from
technology, by introducing the PIM and PSM. Another objective of MDA is to put the
focus back on modelling. Ideally, if the model is detailed enough, only little time is spent
in the actual implementation.

Security in Domain Driven Design
By Michiel Uithol

12

DDD and MDD are compatible. The main difference is that MDD is more aimed at the
translation of models into code, while DDD is more aimed at defining a correct domain
model. Within a MDD-based project there are no problems to apply the DDD principles.
Model-Driven Development (MDD) is the approach corresponding with MDA, as MDD
focuses on models as the primary artefacts. Model-Driven Development recognizes the
necessity of having several kinds of models to represent the system as it progresses from
early requirements through final implementation. These models may represent different
aspects of the system (e.g., structural or behavioural), or they may represent the system
at varying levels of abstraction (e.g., an analysis model or a design model) [DDMD].

Table-Driven Design
Table-Driven Design (TDD) organises business logic around objects that can be directly
mapped to data tables. This method is applied in the current Sun blueprint for EJB
implementations.
The application of TDD addresses the problems that occur when mapping objects in OO
models to relational databases. In these situations an O/R-mapping is needed to persist
the business objects. The retrieval and instantiation of these objects from a database is a
fault prone task in an object oriented mindset [ORM97]. Despite improvements made
concerning databases that can handle objects, these solutions are still not fully
satisfactory, as described in [COOK06].
Table-Driven Design is built around table representations of business objects. For each
type of object, a table is available for storage, which is a flat and simplistic representation
of a real world business entity. Objects like datasets are used to exchange information
back and forth between UIs and databases [SDWZ07]. Instead of the dataset objects, an
active record pattern can be used to link the objects to corresponding tables. This pattern
places the data access logic in the objects themselves [FOWL02].

2.2.2 Implementation techniques
Within this Masters assignment the concept of Aspect-Oriented Programming (AOP)
[YASE07] is used. This is an important aspect of some design options in this Masters
assignment.

Aspect-Oriented Programming
Aspect-Oriented Programming (AOP) is a concept to deal with cross-cutting concerns
efficiently. Cross-cutting concerns are functionality of a program that affects other
functionality [KICZ96]. These concerns often cannot be cleanly separated from the rest of
the functionality.
To deal with cross-cutting concerns, AOP defines aspects, advices, join points and point-
cuts [YASE07] [LADD02].

- Aspects represent a specific piece of functionality that was identified as a cross-
cutting concern.

- The aspect consists of advices that define what actions should be executed in
specific situations, like a method entry or method exit.

- Join points represent locations, like method entries or property declarations, in
the source code.

Security in Domain Driven Design
By Michiel Uithol

13

- Point-cuts exist to link the join points to the advices that should be executed.
Point-cuts define to which join points a specific advice should be applied.

This structure enables AOP to modularize the cross-cutting functionality in aspects.
According to [EADD07] this modularisation of cross-cutting concerns improves software
quality.
AOP is applied to the source code by weaving the aspects into the source code. The
programming language is important for weaving because special compilers are required
to weave AOP aspect code into source code. Examples of these weavers are: AspectJ
[ASPJ] for Java [JAVA08] or PostSharp [POST] for .NET [MSFT08].
Other .NET options the Policy Injection Application Block [PIAB07] in Enterprise Library
3, Aspect.NET and LOOM.NET.

The choice for PostSharp over the other available .NET AOP implementations is based
on recent research into applicability of AOP in the .NET environment by [SRIN07]. In
this research, PostSharp is recommended over Aspect.NET and LOOM.NET.
A drawback of PostSharp is that point-cuts are declared at the target location, this means
that the point-cuts would reside in the domain implementation if domain classes are
targeted. This is unwanted behaviour in DDD because then a dependency on the aspects
is introduced in the domain implementation.

2.2.3 Metrics for measurements
In this Masters assignment, metrics are used to measure coupling and complexity in
implementations.

Coupling Between Objects
The Coupling Between Objects (CBO) [CHID94] metric is frequently used to measure the
amount of coupling between object classes. An object is coupled to another object if the
object uses the other object.

A higher CBO value between classes means a stronger coupling. A stronger coupling is
not beneficial for changes in the development phase, since with stronger coupling
changes in a class have more impact on other classes. A class with a high CBO figure is
more difficult to maintain and test. Stronger coupling also reduces the possibility for
code reuse.

Coupling consists of two factors, namely fan-in and fan-out:

- Fan-in indicates how many
references other objects have to
the selected object.

- Fan-out indicates how many
references the selected object has
to another object.

Figure 4: Coupling Between Objects

Security in Domain Driven Design
By Michiel Uithol

14

The CBO is calculated by counting of the number of references in the code. This count is
meaningful under the assumption that all references are actually used when the system
executes. Another important factor is how often the reference is actually used during
program execution. This can not be measured with CBO, because this CBO is calculated
based on the static environment.

When measuring the fan-in and fan-out of larger applications, counting the references
can be performed on a selected group of objects. Since a service is a collection of classes
with an interface, instead of measuring the coupling between two objects at a time, the
coupling of a whole service to the domain classes can be measured.

Cyclomatic Complexity
Cyclomatic Complexity (CC) [CCMB89] is a method to measure the complexity of
software. The CC value of a programming method is measured by counting the number
of possible paths through the method. This means the CC of a class is measured by
counting the number of methods and then adding the CC value of each method.

The higher the CC value the more complex the method is. A complex method is
potentially harder to understand, harder to test and has higher maintenance costs.
A method with a lower CC value is easier to test because there are fewer possible paths
through the method, which means fewer test cases are needed.

The CC measurement yields three values:
- Total Cyclomatic Complexity
- Cyclomatic Complexity per method
- Number of Decision Points (DP)

Because the total CC value is less suitable for comparison between implementations with
largely varying numbers of classes, the CC per method value is also used in this thesis.
The CC per method value presents the average CC per method in the measured class.
CC value displayed as an average per method provides a better interpretation of how
complex a class implementation actually is than the total CC measurement.

Decision points represent the number of expressions in the source code where different
paths are possible. In the DP value the ‘while’, ‘for’ and ‘for each’ loops count for 2
decision points, because these cycles make the code more difficult to understand. The DP
value indicates the number of paths that can be taken in the code and thus the actual
complexity of a class. For example a class with 1 method containing 20 decision points is
harder to understand than a class with 10 methods containing 2 decision points per
method.

2.3 Coupling of services
In order to understand why security poses difficulties, it is necessary to identify different
types of services that can occur in a DDD application model. When examining services

Security in Domain Driven Design
By Michiel Uithol

15

more closely, considering the type of coupling with the domain implementation, the
services can be divided into three categories:

1. A service that queries the domain implementation
2. A service that alters the state of the domain implementation
3. A service that requires the domain implementation to interact with this service

This means there are three fundamentally different types of services that interact with
the domain implementation.

Differences between these types of services can be found by defining the amount and
type of coupling between the service and the domain implementation.

2.3.1 A service that queries the domain implementation
If a service only reads information from the domain classes, interactions with the domain
classes take place that do not alter the state of the domain classes.
Examples of services that display this behaviour are persistency and logging. In DDD the
persistency and logging services take the initiative to retrieve this information from the
domain implementation after they have been notified. This behaviour is facilitated by
the observer and observable pattern, where the domain classes implement the
observable role and the service the observer role. Another option is that a service
responds to events originating from the domain classes.
The coupling between a service that only queries the domain implementation and the
domain classes consists of an amount of fan-in to the domain classes. The fan-in consists
of the references needed for the retrieval of information by the services.

2.3.2 A service that alters the state of the domain implementation
This type of service consists of services that call methods in the domain. Methods called
in the domain classes can alter the state of the domain implementation or values
contained by classes. By changing the state of the domain implementation, reactions in
other services inside the application can be triggered like the persistency service.
A typical example for this type of service is a user interface.
A user interface either responds to events originating from the domain classes by
updating views, or initiates interactions with the domain classes.
The coupling between a service that alters the state of the domain implementation and
the domain classes consists of an amount of fan-in to the domain classes. This fan-in
consists of the references needed for the retrieval of information and the alteration of the
domain state by the services.

2.3.3 A service that requires the domain implementation to interact with
this service
This type of service contains information that is required by the domain classes before
actions are executed by these domain classes.
These services exist whenever the domain class requires verification of input data (input
validation) or permission to execute methods. Essential information from this service is
needed in order to continue execution.

Security in Domain Driven Design
By Michiel Uithol

16

A service that displays this behaviour is a security service. Input from services that
interact with the domain classes, like user interfaces, requires checking before the actions
are executed by the domain classes.
Other services, like a user interface, initiate an action. Then the domain classes have to
check the permission for this action before executing the action, which means that the
user interface has delegated the initiative for permission checking to the domain classes.
This results in the domain classes having to consult a service and producing fan-out
from the domain classes.
The coupling between a service that requires the domain implementation to interact with
this service and the domain classes consist of both fan-in and fan-out.

2.4 Security service
Implementations designed with security as a normal service in DDD suffer from the
problems described in section 1.2.
These problems are specific for the interactive type of service security belongs to, as
discussed in section 2.3.3. The result is that the security service has a strong coupling to
the domain classes and that the domain classes need to be aware of the existence of the
security service.

The scope of what encompasses security has, for the purposes of this Masters
assignment, been narrowed to authentication and authorisation.

- Authentication consists of proving that the user is a specific person (or role), who
is allowed to access functionality in the application.

- Authorisation consists of proving that the specific person (or role), who has been
authenticated, is authorised to access specific functionality in the application.

The function of the security service is to regulate actions performed by other services by
implementing authentication and authorisation functionality. Especially interactions
with either the domain classes or other services originating from user interfaces must be
checked. If the security service is placed on the same level as a normal service in DDD,
the security service is unable to perform its task properly.
This is the case because in DDD services are coupled to the domain classes, but domain
classes have no references to the services. However, services cannot be trusted to
perform the security checks themselves. In a default DDD situation the security service
does not know about the interactions between the user interface and the domain classes.

To perform authentication, the security service needs to receive credentials and check
these credentials against stored credentials. Authentication is a crosscutting concern
because every time authorisation is needed, the authentication of the issuer has to be
checked. Authentication is either performed only once, after which a session bound
object is created to store the login, or it is performed each time an authorisation is
needed. In either case, the authentication is checked at every authorisation.

Authorisation is a crosscutting concern since multiple methods in different services and
the domain need to be checked for authorisation. Two different kinds of checks can be

Security in Domain Driven Design
By Michiel Uithol

17

performed during authorisation: check if an interaction is allowed for this role or user,
and check if an interaction is allowed under certain conditions for this role or user. These
conditions are usually related to the state of the domain classes. If an interaction is
allowed, some filtering might still need to be applied to the results based on the
authorisation of the user.

The type of the security service, as discussed in section 2.3, indicates that it is difficult to
separate security from the domain implementation in the way other types of services are
separated. The crosscutting nature of authentication and authorisation of security add
up to the problem resulting in a service with high coupling to the domain
implementation concerning both fan-in and fan-out.

Security in Domain Driven Design
By Michiel Uithol

18

Chapter 3
Case Study
This chapter presents the design and a reference implementation of the case study. This
chapter also provides the criteria to determine the usability of new designs to implement
this case study.
The role of this chapter is to present the case study, in order to compare new design
options and review these possible improvements.

3.1 Case study overview
To describe the problems and possible solutions, the ‘Bank case study’ [BANK07] is
chosen because this is a case where multiple levels of security are easily and naturally
represented. In this case study the effect of adding security functionality is clearly visible
and easily comprehendible.
A case study is needed to illustrate the concepts behind the separation of security as a
service. The reference implementation of the case study provides the possibility to
measure the amount of coupling introduced by the security service.
The reference implementation of the case study has the security functionality built into
the domain classes. This implementation will be used as a reference implementation and
provides reference measurements that can be compared to new implementations of the
case study.
The design of the reference implementation is provided to be able to compare new
designs with the reference design. Because at the design phase only the application
model exists and no actual code is available, only estimations of the coupling between
different objects are available.

The bank case study models how a bank is run and how clients and managers can
interact with the accounts. Clients and managers each have their own specific
possibilities and restrictions.
The bank case study allows clients and managers to perform actions with certain
limitations, as shown in Table 1. Clients are allowed to manage their own accounts up to
certain limits. Clients can withdraw up to 1000 euros a day, deposit an unlimited amount
of money and transfer money up to 1000 euros a day. Clients are also allowed to view
their own account status.
Managers can perform the same actions as a client, but they are also allowed to create
clients and accounts. Actions of a manager are also restricted based on their role as a
Junior or Senior manager.

Security in Domain Driven Design
By Michiel Uithol

19

Roles
Rights

Client Junior Manager Senior Manager

Deposit Unlimited 500/Client/day 2000/Client/day
Withdraw 1000/day 2000/Client/day 5000/Client/day
Transfer 1000/day 2000/Client/day 5000/Client/day
Add client Not Allowed Not Allowed All clients
Alter client name Not Allowed Not Allowed All clients
Alter client address Own address All clients All clients
Create account Not Allowed For clients that are less than

1000 euros in dept
All clients

View client details Own details All clients All clients
Table 1: Roles and rights in the bank case

Both managers and clients interact with the domain implementation via the same user
interface. The difference between these roles in the user interface is made by the
credentials used to login.

The bank case study is designed according to a DDD application model. The domain
model consists of the interfaces IBank, IClient, IAccount, ITransaction. The domain
implementation contains these interfaces and classes that implement these interfaces.
The Bank class implementation contains lists of clients and accounts and class is able to
create new clients and accounts. The Client class implementation contains information
about a client and related accounts. The Account class implementation contains the
account number, owner, current balance and a collection of all transactions performed
related to the account. The Transaction class implementation contains information about
a transaction. The interfaces and their relations are depicted in Figure 5. An
implementation of the bank case study in C# was provided by Sogyo and is the basis for
the case study implementations discussed in this report.

Security in Domain Driven Design
By Michiel Uithol

20

Figure 5: The relations between the interfaces in the domain model in the Bank case study

Outside of the domain model, the bank case study contains services. A repository
containing references to the Bank class implementation and to services is available to
provide access to the domain objects and services. The application model contains a UI
service that provides accessibility to a user. In the application model, multiple instances
of the UI service can be coupled to the domain model to allow multiple users to use the
bank concurrently. Another service in the application model is an IO service, which
performs batch file processing. This service allows the user to execute a series of actions,
which can consist of all the possible actions of the current user. The IO service also
contains classes that can create reports about the state of the domain model, containing
client and account information. The IO service thus allows users to check the current
amount of money on their account.

Security in Domain Driven Design
By Michiel Uithol

21

3.2 Reference implementation:
Security embedded in the domain model

Currently when security is applied to a problem domain, the security functionality is
integrated into the domain model as seen in Figure 6. This implementation structure with
security functionality in the domain implementation is often found in projects at Sogyo.

Figure 6: Class diagram of the application of security in a DDD application

The implementation only provides accessibility for one concurrent instance of the UI
service, so the ability to facilitate concurrent UI service instances is only visible in the
model.

For the implementation, Role Based Access Control (RBAC) is used because this is a
better solution than authorising individual users. RBAC is preferred over authorisation
of individual users because it is easier to configure and maintain [COMP03].

3.2.1 Usability and Features
Due to the integration of the security functionality in the domain implementation, the
security functionality is only consulted in the domain model when information is being
accessed that needs authorisation. Authentication and authorisation functionality are
both centralised in the domain model and are checked by the domain classes when
needed.

In this scenario, the UI communicates directly with the domain model and no restrictions
are imposed on the methods it can access.
The domain class implementation is responsible for checking the UI service’s
authorisation. An example of the security check in the Client class implementation is
shown in Code Fragment 1, here the authentication of the user is checked to determine
whether the user requesting the information is authorised to retrieve it. In this example
the security implementation has already stored the user’s credentials in a User object.
The individual methods check the authorisation level corresponding with the method
call with the security functionality in the domain implementation.

Security in Domain Driven Design
By Michiel Uithol

22

public override string ToString()
{
 if (!security.user.RoleSet.IsPrintClientDetailsPermitted(this))
 {
 security.GenerateSecurityException(
 “You are not allowed to view this clients details.”);
 }
 return String.Format(“{0} {1} {2} – {3} {4}, {5}”,
 this.clientNumber, this.firstName, this.lastName,

 this.street, this.houseNumber, this.city);
}
Code Fragment 1: Security check in the Client implementation

Code Fragment 1 is executed when the client’s ToString() method is called. First the
authorisation of the current user is checked. The current user is retrieved in the security
functionality and then the corresponding Roleset with the user’s authentication is
retrieved. According to the Roleset of the user this action is allowed or disallowed. In
case the action is disallowed, the calling object receives an exception and the code
execution in the client class is stopped. In case the action is allowed, the calling object
receives a string representation of the client class. This behaviour is shown in the
sequence diagram in Figure 7.

Figure 7: Sequence diagram of the security checks in the Client implementation

This high cohesion between the domain model and security is practical and efficient to
use. Guards and access impairments to the domain methods are immediately clear to
developers.

Security in Domain Driven Design
By Michiel Uithol

23

3.2.2 Concerns
The high cohesion between security and the domain model poses a problem for
separation of concerns. The coupling results in security functionality that cannot be
separated from the domain functionality in this scenario.

3.2.3 Conclusion
Within this scenario no problems arise concerning authentication and authorisation.
This implementation does not apply the DDD idea, where security should be a service,
as it is domain-independent functionality. This should be improved in new scenarios.

The coupling between security classes and the other domain classes is strong because of
the cohesion between the individual methods in the Client, Bank and Account classes
and the security functionality. The domain class implementations were found to have a
fan-in of 10 references and a fan-out of 17 references to the security functionality, as the
domain classes have a reference to the security functionality in almost every method.

3.3 Criteria for case study designs
Selection criteria have been defined to determine the usability of the scenario designs.
These criteria are the design and implementation level goals that should be attained. To
what extent the scenarios comply with these criteria indicates their usability as a
solution.

A design option complies with the target DDD situation, in this case study, if it complies
with these requirements:

- The security functionality is placed in a service with low coupling between the
security service and domain implementation.

- The security functionality is implemented as a separate service and only fulfils
the tasks of authentication and authorisation.

- The security service has knowledge and control over all interactions with the
domain implementation.

- The security service and the other services are ‘regular’ services. A ‘regular’
service has access to both the domain implementation and the other services. This
means that other services are still allowed to interact with the domain
implementation and not only with the security service.

Six criteria have been defined. These criteria are used to judge the potential of designs.
Criteria for the new case study designs are:

1. At the design level an estimation of the coupling in the application model
introduced by the security implementation can be made. Without actual
implementation of the classes, known metrics as described in [MOOD95],
[CHID94] cannot be used because these metrics involve the analysis of source
code. At the implementation level this coupling can be quantified by using the
CBO measurements. The coupling is compared to the coupling generated by the
security implementation in the scenario described in section 3.2.

Security in Domain Driven Design
By Michiel Uithol

24

2. The extent to which the scenario complies with the principles of separation of
concerns. Is the security functionality separated from the domain
implementation? Does the security functionality only handle the concerns of
correct authentication and authorisation?

3. The usability and efficiency for developers. How much code is needed to
implement the security? Can, a part of, this code be generated? The scalability of
the solution proposed in the scenario should be considered here. In the bank case
study this means the model can be effectively used in an environment containing
multiple instances of the UI service.

4. The extent to which the scenario yields the same level of security as the design in
section 3.2. This level of security indicates whether the UI service has possibilities
to bypass the authentication and authorisation functionality.

5. The degree to which the scenario complies with the target DDD situation as
explained in this section and the DDD definition as presented in Chapter 2. If the
security functionality is implemented in a service, does it follow the general
service definition?

6. The transparency and logical structure of the idea behind the design, thus
making it easy to understand. This indicates whether developers can easily
understand and modify the code without breaking functionality. Usage of
common patterns increases clarity in the application model. This also includes
instrumentation, allowing the developer to accurately assess how the application
works and the implications of changes in the source code.

Security in Domain Driven Design
By Michiel Uithol

25

Chapter 4
Security service design scenarios

This chapter presents the alternative scenarios developed to implement a security service
in a DDD environment.
This chapter’s role is to create a set of platform-independent models that describe the
design alternatives to the problems faced when designing security as a service in DDD.
The goal is to create security in a service while maintaining ease of use and
authentication and authorisation correctness. In this chapter the assumption is made that
the UI service is running on the computer of a user, and thus cannot be trusted.

If in this chapter a comparison is made with section 3.2, this comparison is made
between the design of the case study implementation described in section 3.2 and the
design of the scenario.
The scenarios in this chapter are reviewed to determine the possibilities and features the
model provides, but also to determine concerns about the restrictions introduced by the
model structure. Finally a conclusion is made considering the usability of the design.

The scenario conclusion reflects on the design taking into account both the advantages
and disadvantages of the design. The usability of the design indicates the usability for
developers to work with the design is reviewed. The usability is determined by the
compliance to the criteria that are summarized in section 3.3.

4.1 Scenario 1:
Security service as regular service

This scenario presents the possibilities that are available to developers when security
functionality is implemented as a regular service.
This means the security service only has knowledge about the services and the domain
implementation and is not able to intercept communications or enforce rules on other
services or on domain classes.

Security in Domain Driven Design
By Michiel Uithol

26

4.1.1 Usability and Features

Figure 8: Class diagram of security as a regular service

In this scenario security is coupled to the domain model in the same way as a regular
service. Separating the service resolves the issue concerning domain-integrated security.
Because the security service is not able to impose rules on other services in this scenario,
the UI service is allowed to interact with either the security service or directly with the
domain classes.

The first part of security involves the authentication of the user. When interacting with
the domain implementation the UI service first authenticates the user with the security
service. The security service keeps track of the correct credentials for the UI. After
authentication the UI service is able to request authorisation for actions.

The second part of security involves authorising actions of the user. The credentials for
the user should be already available by authentication. The UI service is authorized
according to its authentication level or roles. After authorisation the security service can
perform the actions and return possible results or leave this interaction to the UI service.

If the UI service performs these actions the interactions with the domain classes is safe,
this behaviour is shown in Figure 9.

Security in Domain Driven Design
By Michiel Uithol

27

Figure 9: Sequence diagram of successful security checks in the Security service

If the UI service interacts with the domain classes directly problems occur because these
interactions are not checked, this behaviour is shown in Figure 10.

Figure 10: Sequence diagram of failed security checks in the Client implementation

Security in Domain Driven Design
By Michiel Uithol

28

4.1.2 Concerns
Because the security service is implemented as a regular service, it is unable to regulate
all interactions performed by the UI service. The UI service is able to interact with the
domain classes without the security service being aware of this interaction. This
interaction is shown in Figure 10. The UI service accesses the domain class without the
security functionality being aware of this interaction.
When the UI service interacts with the methods in domain classes a problem arises,
namely the identity of the user behind the UI service is not verified by the domain
classes. Here authentication is not performed. The same problems occur in authorisation.
In some way the domain classes need to assure that the UI service has been
authenticated and is authorised to perform the action. This represents a problem in the
DDD environment. The authorisation of the UI service can not be checked if the domain
model is not aware of any service.

If the UI service interacts with the domain classes directly the remaining options are
insecure:

- The event raising method is unsafe because there are no guarantees about which
service responds to these events, if any.

- If a method is reserved to be called by the security service, this rule can not be
enforced by the domain classes.

4.1.3 Conclusion
This design results in a lower coupling between the domain model and security. But this
change is obtained in an insecure way.

This scenario is not usable because the UI service cannot be trusted. The direct
interaction between the UI service and the domain model allow the UI service to
perform arbitrary actions.

4.2 Scenario 2:
Security embedded in the UI

This scenario places the security functionality in the UI service. Moving the security
functionality into the UI service could solve the problems with security seen in Scenario
1.
The UI service should consult the rules as specified in these security classes before
starting an interaction with the domain implementation.

Security in Domain Driven Design
By Michiel Uithol

29

4.2.1 Usability and Features

Figure 11: Class diagram of integrated security in the UI

In this scenario, the UI service embeds and implements all required features for
authentication and authorisation. When this scenario is used in a problem domain, the
UI service authenticates the user by checking the provided credentials. After a successful
authentication, the UI service checks all the actions to authorise them, before sending the
actions to the domain model. The self regulating behaviour is efficient to program
because the security classes are only used when needed. The authorisation code for an
action can be coded in the corresponding method or delegated to a security class inside
the UI service.

The authorisation and authentication stages of security are performed by the UI service.
Before starting to interact with the domain classes the UI service authenticates itself and
the UI service authorises every interaction the user performs before forwarding this
interaction to the domain classes. This behaviour is shown in Figure 12.

Security in Domain Driven Design
By Michiel Uithol

30

Figure 12: Sequence diagram of successful security checks in the UI service

By placing the security features into the UI service, the domain classes are unaware of
the security service implementation. The domain model has no pollution into the source
code and does not implement any security features.

This scenario works in compliance with the DDD paradigm concerning the domain-
related functionality and separation of security into a service. However, integrating
different domain-independent functional components (the user interface and security) is
not compliant with the DDD target situation as presented in section 3.3.

4.2.2 Concerns
The domain classes have to assume all actions are authorised. The possibility arises that
the UI service bypasses the security functionality as shown in Figure 13. The UI service
can have access to information and actions it should not have. Because the domain
classes do not know about security rules, it assumes that the requests received from the
UI are in accordance to the security rules.

Security in Domain Driven Design
By Michiel Uithol

31

Figure 13: Sequence diagram of bypassed security checks in the UI service

If a different UI is required, the complete security code needs to be re-written in the new
UI. This causes code duplication and extra work when expanding the application.
Code duplication refers to the fact that any change to the security rules needs to be done
in multiple places. When not all UIs are updated correctly, bugs are introduced in the
application. Code duplication conceals this if testing does not obtain full coverage.

4.2.3 Conclusion
Integrating security functionality into the UI service is a bad choice for the separation of
concerns. Different domain-independent functionality should not be located in a single
service. This combination of functionality creates a dependency between the UI and the
security implementation, any change in security policy involves recalling all UI
implementations and updating them.

Glitches in the security implementation in the UI service represent a problem of the
application that should be considered. If security methods are not checked, the UI
service has a free passage into restricted domain functionality as shown in Figure 13.
This scenario is not tamperproof; if the UI service methods are altered the domain classes
do not know that executed actions are not allowed.

4.3 Scenario 3:
Security service encapsulating the domain model

This scenario is related to the service layer architecture as described in [FOWL02]. By
moving the UI service and other services into the model, the security service regulates all
interactions with the domain model. This architecture has traits that resemble a proxy or
façade pattern. The security service functions as a proxy towards, or façade to, the
domain implementation.

Security in Domain Driven Design
By Michiel Uithol

32

This scenario provides for secure interactions between the services and the domain
classes by intercepting all interactions originating from services. This should solve the
issues with security described in Scenario 1 and Scenario 2.

4.3.1 Usability and Features

Figure 14: Class diagram of security service as a layer above the domain model

In this scenario all services in the application are coupled to the security service. The
security service relays all actions for the domain classes. This scenario allows imposing
rules on other services and regulating their activities for a maximum security level.

When one of the regular services performs an action in the domain implementation, the
security service checks the authentication and authorisation level of the caller. After the
check the security service has to perform a number of different actions. Depending on
the action and authorisation of the caller, the security service has to:

- Tunnel the function and procedure calls into the correct domain classes.
- Tunnel the function and procedure calls into the correct domain classes and filter

the feedback afterwards.
- Call another, more restricted, function or procedure in the domain classes.
- Block the function or procedure call and raise an exception.
- Relay events from the domain model towards other services.

Authentication and authorisation are both handled by the security service. It is not
possible for the UI service to bypass these security checks, because the UI service has no
direct access the domain classes. The authorisation sequence is shown in Figure 15.

Security in Domain Driven Design
By Michiel Uithol

33

Figure 15: The authorisation sequence with the security service as a layer

This scenario works in compliance with the DDD paradigm concerning the domain-
related functionality and the separation of security functionality into a separate service.
However, the security service does not only handle the authentication and authorisation,
but also functions unrelated to security. These extra functions in the security service are
not compliant with the DDD target situation as presented in section 3.3.

4.3.2 Concerns
In this scenario the security service acts like a broker of all interactions with the domain
model. Managing all these interactions should not be the responsibility of the security
service.
The security service contains a lot of methods mainly aimed at relaying information and
requests to the other services.

Other effects of this design include that the security service needs to distinguish different
services. A persistency service requesting a complete list of all users is completely
different from an UI requesting the same data. In this case the persistency service needs
an authorisation level. This is not practical to implement because the main concern
should be to authorise user actions.

Concerns regarding event handling arise; if services require reception of events
originating from the domain, these events need to travel through the security layer. An

Security in Domain Driven Design
By Michiel Uithol

34

example is to notify the persistency service that a domain object is changed and needs to
be stored. In this scenario the event or observable pattern should be intermediated by the
security service, which is inefficient.

4.3.3 Conclusion
Compared to the implementation from section 3.2 this scenario has a lower coupling
between the security implementation and the domain model. The remaining coupling is
caused by checks performed by the security service that are based on the state of the
domain model and the relaying of method invocations from all services.

In this scenario security is tight, as all interactions from all services towards the domain
classes are checked. Authentication and authorisation work well when determining the
security level between the UI service and the domain model. In order to implement this
scenario, roles should be defined for services. Defining roles for specific services is more
difficult. Each method invocation should be performed at the level of the lowest rights in
the calling chain. Thus for different calls of the same method different roles must be
provided by the service.

The security service has to perform too much tunnelling and intermediary work.
Multiple tasks are performed by the security service. These tasks, security and
performing intermediary work, should be separated.

4.4 Scenario 4:
Security service as a gateway for the UI

This scenario is based on the decision to let the security service only handle input from
the UI service. By only authenticating and authorising the actions performed by the UI,
other services do not have to be authorised and intermediated. This scenario is a
refinement of Scenario 3, in this scenario the security functionality is not required to
handle all communication with the domain classes. Only interactions originating from
the UI service are checked.

Security in Domain Driven Design
By Michiel Uithol

35

4.4.1 Usability and Features

Figure 16: Class diagram of the security service as a gateway for the UI

In this scenario the UI is only connected to the security service, all function and
procedure calls are directed at the security service. The input from the UI is transferred
and checked by the security service. When the UI starts an interaction it needs to
authenticate using the security service. Based on this authentication further actions
initiated by the UI can be authorised. If another UI needs to be coupled to the domain, it
can be linked to the already available security service, thus ensuring that the same
restrictions apply to all the interfaces.

The location of the security service is based on the need to check the communication
from the UI service with the domain model. Communication between the domain classes
and the persistency service do not have to be checked because that service is only
reacting to changes in the domain classes and no outside parties (like an UI) are able to
directly access the persistency service.

When the security service receives a request from the UI it checks the authorisation level.
After the check the Security service has to perform four different actions.

- Tunnel the function and procedure calls into the correct domain classes.
- Tunnel the function and procedure calls into the correct domain classes and filter

the feedback afterwards.
- Call another, more restricted, function or procedure in the domain classes.
- Block the function or procedure call and raise an exception.

The security service also has to relay events from the domain classes towards the UI.

Authentication and authorisation are both handled by the security service. To ensure the
application security, either all services have to be coupled to the security service so their
requests can be checked. The other option is to regulate requests from the UI service
towards the other services. The sequence diagram concerning the authorisation process
is the same as in the previous scenario, shown in Figure 15.

Security in Domain Driven Design
By Michiel Uithol

36

This scenario works in compliance with the DDD paradigm concerning the domain-
related functionality and the separation of security functionality into a separate service.
However, the security service does not only handle the authentication and authorisation,
but also functions unrelated to security. These extra functions in the security service are
not compliant with the DDD target situation as presented in section 3.3.

4.4.2 Concerns
The security service checks and relays all requests from the UI service; this includes
requests unrelated to any security check. By handling all requests from the UI service the
security service implements methods that only relay information between the domain
model and the UI service. This is not a job that should be performed by the security
service. Scalability problems arise, if the domain model is more complex, many methods
are needed in the security service. A proxy or adapter pattern could be implemented to
reduce this effect. With an adapter or proxy pattern, the adapter is responsible for the
handling the tunnelling functions and the security functionality is only accesses when an
interaction requires authorisation.

If the UI service is completely separated even from other services, the security service
must also relay requests from the UI service towards other services. This also applies
vice versa, i.e. events from other services must be redirected back to the UI service.

If another service requires authorisation checks, all interactions from this service must be
handled by the security service to prevent unauthorised access.

4.4.3 Conclusion
Compared to the implementation from section 3.2 this scenario has a lower coupling
between the security implementation and the domain model. The remaining coupling is
caused by checks the security service performs that are based on the state of the domain
model and the relaying of method invocations from the UI service.

This design presents a good step towards separation of concern by intercepting only the
necessary method invocations. Only the pass-through functions should be separated
from the security functionality, which enables better reuse of the security functions and
classes.

4.5 Scenario 5:
Security service as an adapter for the UI

This scenario is an improvement on the decision to let the security service only handle
input from the UI service. By only authenticating and authorising the actions performed
by the UI service, actions of other services do not have to be handled by the security
service.
The improvement consists of moving the functionality needed to relay and check
method calls from the UI service into the adapters [GOF95]. For simplicity this scenario
only references adapters to illustrate the concept. Using a proxy or façade pattern in the

Security in Domain Driven Design
By Michiel Uithol

37

same way this would yield the same functional result, as these are similar structural
patterns [GOF95].
In its current form, this scenario leaves a choice to the designer. Either all services should
be coupled to security adapters so their requests can be checked, or requests from the UI
service towards the other services should be intercepted and checked. Checking requests
towards other services means that adapters must be defined for interactions with these
services.

4.5.1 Usability and Features

Figure 17: Class diagram of an adapter implementation

In this scenario the UI service interacts with the domain adapters and other services. The
other services used by the UI services should also interact through security adapters. The
security adapter checks all the method calls from the service. In these methods the
clearance of the UI service is checked using the classes in the security service. In this
scenario the checking is performed with regular method invocation. No security logic is
present in the security adapter, since it is a slim intermediary. The sequence of the
authorisation process is shown in Figure 18.

Security in Domain Driven Design
By Michiel Uithol

38

Figure 18: The authorisation sequence with the secure Client Adapter

Multiple services can use the same secure adapter if restricted access to the domain
classes is needed. Security logic is separated into a separate service and all security rules
are stored in the security service. This means there is one point where the security policy
is defined.
If the repository is accessed by the UI service it should also return the security adapter
objects instead of the domain objects.

By separating the security functionality into a standalone service, its focus retains the
original purpose. The security service does not tunnel requests to the domain classes, the
security functionality is only used when a method requires restricted access.
If the security adapter can not perform security checks because the security service is
unavailable, the adapter blocks all restricted calls to the domain classes.

Only security adapters need to know the domain classes and generate coupling. In this
scenario the security service still has to interact with the domain classes when security
decisions are made that depend on the state of the domain classes.

The main benefit from this approach is that the base implementation of the security
adapters can be generated. Points where security is applied are defined after this
generation.
Expandability is facilitated by more adapters to allow the UI service to communicate
with other services or these other services can check the UI service access rights with the
security service implementation.

Security in Domain Driven Design
By Michiel Uithol

39

This scenario works in compliance with the DDD target situation concerning the
domain-related functionality and the separation of security functionality into a separate
service. Depending on the placing of the adapters in the model this scenario is compliant
with the DDD target situation as presented in section 3.3.
The adapters can not be placed inside the domain model. If the adapters are placed in
the security service, the UI service does not interact directly with the domain
implementation.

4.5.2 Concerns
In order to function properly, assurances are needed that the UI service has no direct
access to the domain classes.
Other services used by the UI service should also have no direct access to the domain
classes, but only to the secure adapters.

If it is required that the UI service is completely separated even from other services, the
security adapters must also relay requests from the UI service towards other services.
This also applies vice versa, i.e. events from other services must be redirected back to the
UI service.

4.5.3 Conclusion
Compared to the implementation from section 3.2 this scenario has a lower coupling
between the security implementation and the domain model. The remaining coupling is
caused by checks the security service performs that are based on the state of the domain
model.

By moving the pass-through functions from the security service into adapters the actual
security rules and logic are separated from the relaying of information. The security
service regains the original concern of security.

4.6 Scenario 6:
Security service integrated by AOP with adapters

This scenario introduces Aspect-Oriented Programming (AOP) [AOP08] to the problem
domain. By using AOP the UI service, adapters and the domain model do not have to be
aware of the security service for authentication purposes. The UI service only requires
knowing the security service for authentication and the definition of security exceptions.
Aspect oriented programming defines aspects as pieces of code that have to be inserted
in the source code at specific points. These aspects signify a crosscutting concern (aspect)
of all the targeted methods in the source code.
In this scenario, AOP is used in conjunction with the scenario from section 4.5. The
combination results in the point-cuts intersecting with join points in the intermediary
adapter. AOP removes the security logic from the adapters into aspects, an added benefit
is that the adapters can be generated by an Integrated Development Environment (IDE)
and do not have to be edited to apply security.

Security in Domain Driven Design
By Michiel Uithol

40

AOP defines join points, point-cuts and advices to represent these places in the code
[YASE07]. Join points represent locations, like method entries or property declarations,
in the source code where AOP can hook in. Point-cuts define to which join points a
specific advice should be applied. An advice is a part of a specific aspect which defines
what actions should be executed. Examples are onEntry or onExit of the method call,
which apply before and after the method defined by the join point.

4.6.1 Usability and Features

Figure 19: Class diagram of an AOP security service implementation with adapters

In this scenario the security service is located and coded in a standard service location
outside of the domain model. The UI service has no direct links towards the security
service for authorisation.
After the advices are weaved into the adapter code, the security code is executed every
time the functions are referenced. The compiled code containing the weaved advices
behaves the same as if the security functionality had been integrated in the regular
security adapters.

When AOP is applied to the application model the aspects yield the same end result as
seen in the scenario with the adapters providing access to the domain model. The usage
of aspects for crosscutting concerns save developers lines of code, because the
crosscutting concerns are handled in one location in the code instead of many locations.

Authentication is handled by the security service and authorisation is woven into the
adapters by the aspects. The sequence of authorisation after the aspects are woven in the
source code is shown in Figure 20. The sequence highlighted with ‘critical AOP’ is
handled by code specified in the aspects in the security service.

Security in Domain Driven Design
By Michiel Uithol

41

Figure 20: The authorisation sequence with the Client adapter and AOP

Weaving ensures that the advices are inserted at the join points designated by the point-
cuts. The advices make sure that corresponding methods for authorisation are executed
in the security service. Different implementations of AOP enable different kinds of
weaving that can be performed by AOP at compile time or at runtime.

This scenario works in compliance with the DDD target situation concerning the
domain-related functionality and the separation of security functionality into a separate
service. Depending on the placing of the adapters in the model this scenario is compliant
with the DDD target situation as presented in section 3.3.
The placing of the adapters influences the compliance with the DDD target situation
because the adapters can not be placed inside the domain model. If the adapters are
placed in the security service, the UI service does not interact directly with the domain
implementation.

4.6.2 Concerns
When using aspects some problem areas like clarity of code, changes to the code and
overuse of AOP must be considered.

Clarity of code becomes a concern because the point-cuts of advices are not immediately
clear in a standard IDE. Specific plug-ins are needed to correctly display where point-
cuts hook into join points in the application implementation. This is difficult to apply to

Security in Domain Driven Design
By Michiel Uithol

42

the domain model, since the least possible pollution of source code is wanted in the
domain classes. Despite adding little information to the domain model it should be
perfectly clear where point-cuts apply. Especially for security it is vital to be sure every
possible path is covered.

When using AOP, it becomes more hazardous to change in the source code because of
methods that are targeted by point-cuts.
While the application is under development it is impossible to make no changes to
methods targeted by point-cuts, because changing the domain model during the
implementation phase is at the heart of developing an application. With incorrect
tooling, changes to the source code are always a risk. Problems consist of point-cuts not
matching the correct join points any more, or point-cuts that inadvertently apply or do
not apply to new methods.

AOP is meant to be a solution for crosscutting concerns. Clear limits and boundaries
need to be posed on the use of aspects. The cases where it is applied have to be studied
to prevent overuse of aspects in places where they are not necessary. This is needed to
prevent business logic from being migrated to advices outside of the domain model.
Otherwise there is a possibility that an anaemic domain model is created that does not
contain the business logic.
In the bank case study, business logic like the prevention of negative deposits on an
account could be placed in an aspect. This would remove responsibility from the domain
implementation that should remain in the domain implementation.

Furthermore the order of multiple point-cuts on one join point is not guaranteed or
known. If other aspects besides security aspects are used, i.e. to create transaction
objects, these could have precedence over the security aspects and thus result in
unpredictable behaviour. This could also result in the domain state becoming invalid.
Different implementations of AOP offer optional priorities or the possibility to declare
precedence of aspects. However, this is only a partial solution to the problem because
collisions between these priorities can still occur.
Concerning the different types of advices, no standardized advices are defined for AOP
in general, meaning that the types can be different for each implementation.

4.6.3 Conclusion
Compared to the implementation from section 3.2 this scenario has a lower coupling
between the security implementation and the domain model. The remaining coupling is
caused by checks the security service performs that are based on the state of the domain
model.

AOP provides great possibilities especially within DDD, since coupling can be easily
reduced for crosscutting concerns. These improvements are achieved with some
drawbacks that should not be overlooked.

Security in Domain Driven Design
By Michiel Uithol

43

4.7 Scenario 7:
Security service integrated with AOP

In this scenario AOP is applied directly to the domain classes. It explores another
possibility for applying AOP in an application. By applying AOP to the domain model
intermediary adapters are not necessary and the design is simplified.

4.7.1 Usability and features

Figure 21: Class diagram of an AOP security service implementation

In this scenario the security service, containing the security logic is located and coded in
a regular service location outside the domain model. The UI service has no direct links
towards the security service for authorisation.
This scenario looks very much like the scenario with security as a regular service in
section 4.1 except that Aspect-Oriented Programming (AOP) is used. After the advices
are weaved into the domain class code, the security code is executed every time the
functions are referenced. In weaved code the application behaves like the security
service is integrated into the domain model as seen in section 3.2.

When AOP is applied to the application model the aspects yield the same end result as
seen in scenario 3.2. The usage of aspects for crosscutting concerns save lines of code and
reduces the complexity of methods. Using AOP means there is no pollution in the source
code of the domain model originating from the security service.

Authentication is handled by the security service and authorisation is woven into the
domain model by the aspects. In principle this is sufficient and it can be assumed that
the aspects are correctly woven into the source code. The sequence of authorisation after
the aspects are woven in the source code is shown in Figure 22.

Security in Domain Driven Design
By Michiel Uithol

44

The UI service interacts directly with the domain class. The UI service is unaware of the
security screening in this situation. The sequence highlighted with ‘critical AOP’ is
caused by code specified in the aspects in the security service.

Figure 22: The authorisation sequence with the Client class and AOP

Weaving ensures that the advices are inserted at the join points designated by the point-
cuts. These advices make sure that corresponding methods for authorisation are
executed in the security service.

The usage of aspects in programming complies with the DDD target situation. No
security code is added to the source code of the domain model. The UI service now has a
role as a regular service and can perform actions directly in the domain model.

4.7.2 Concerns
The same concerns about the usage of AOP as described in section 4.6.2 apply to this
scenario.

A problem that must be considered in this design is how method invocations in the
domain implementations are connected to a corresponding UI service. The domain
implementation does not know about the existence of a UI service, so the identity and
role of the UI service must be stored elsewhere.

Security in Domain Driven Design
By Michiel Uithol

45

4.7.3 Conclusions
Compared to the implementation from section 3.2 this scenario has a lower coupling
between the security implementation and the domain model. The remaining coupling is
caused by checks the security service performs that are based on the state of the domain
model.

AOP provides great possibilities especially within DDD, since coupling can be easily
reduced for crosscutting concerns. These improvements are achieved with some
drawbacks that should not be overlooked. Deliberation is needed to apply AOP
successfully in an application implementation.

This scenario has a very clean look and complies with the DDD target situation as
presented in section 3.3.

Security in Domain Driven Design
By Michiel Uithol

46

Chapter 5
Security design implementations

This chapter presents the scenario implementations. A selection is made of designs from
Chapter 4. The selected designs are implemented for the case study design as described in
Chapter 2.
The role of this chapter is to present the selection process and to determine the usability
of the scenarios according to the criteria from section 3.3. Because the selection is made
based on scenarios on the model level without actual source code to measure, metrics
that quantify coupling are not available. After the selection of the most usable designs
these are implemented in the bank case study.
This implementation reveals the possibilities and problems the scenarios pose to
implement security functionality as a service in the DDD environment.

5.1 Scenario selection
As described in section 3.3 the criteria for scenario selection are:

1. Estimated coupling Security and Domain: An estimation of the coupling reduced
by the security implementation in comparison with the reference design from
section 3.2.

2. Separation of Concerns: The extent to what the scenario complies with the
principles of separation of concerns.

3. Usability and efficiency: The extent to which the scenario is usable and efficient.
4. Functional result as required: The extent to what the scenario yields the same

level of security as seen in section 3.2.
5. Accordance with DDD definition: The degree to what the scenario complies with

the DDD definition as presented in Chapter 2 and the DDD target situation
presented in section 3.3.

6. Transparent and Logical: Is the idea behind the structure of the scenario
transparent and logical?

Because the scenarios only present models, the score for the criteria is based on the
intermediary conclusions from Chapter 4.
In Table 2 the scenarios presented in Chapter 4 are weighed according to the criteria. For
each of the criteria the scenario is awarded a rating on a scale of 1 to 5, which are
displayed as --/-/o/+/++, with -- meaning poor performance and ++ excellent performance
concerning this area.

Security in Domain Driven Design
By Michiel Uithol

47

Criteria

Scenarios
Es

tim
at

ed
 c

ou
pl

in
g

Se
cu

ri
ty

 a
nd

 D
om

ai
n

Se
pa

ra
tio

n
of

C

on
ce

rn
s

U
sa

bi
lit

y
/ E

ff
ic

ie
nc

y

Le
ve

l o
f s

ec
ur

ity
 a

s
re

qu
ir

ed

A
cc

or
da

nc
e

w
ith

D

D
D

 ta
rg

et
 s

itu
at

io
n

Tr
an

sp
ar

en
t

/ L
og

ic
al

Fi
na

l S
co

re

1: Regular Service + + -- - ++ + N/A
2: Integrated in UI + - - - o + N/A
3: Security Layer o o - ++ o + (2) Poor
4: Gateway + o + ++ + ++ (8) Average
5: Adapter / Proxy + + ++ ++ + ++ (10) Good
6: AOP w/ Adapter + ++ ++ ++ + + (10) Good
7: AOP w/ Domain + ++ ++ ++ ++ o (11) Good
Table 2: Usability overview of scenario from Chapter 4

The most important criterion of Table 2 is whether the same level of security is attained
as in the reference implementation. Without this level of security the scenario is not
suitable. The accordance with the DDD target situation is more important than the
remaining criteria, so 2 points are rewarded for every + in this category, the other criteria
result in 1 point per + and -1 point for every -.

Scenario 1 illustrates the initial idea about security as a service. Here security is
presented as a regular service. The problems as described in section 1.2 become
immediately clear.
Due to the problems concerning the security functionality this scenario is not suitable
and should not be implemented.

Scenario 2 demonstrates the option of integrating security into the UI service.
Due to the problems concerning the security functionality this scenario is not suitable
and should not be implemented.

Scenario 3 introduces the principle of moving security into a service that works like a
layer surrounding the domain model. A low mark is received on the ‘Usability and
efficiency’ because the security service has to handle all communication between services
and the domain model in the application. Consequently this is an inefficient
implementation with low performance.
The ‘Functional result’ of this scenario is good because of checking of all communication,
the design is easy to understand because the layer model is well known.

Scenario 4 retains a high ‘Functional result’ with the security being able to check all
interactions with the UI service. This scenario has a higher score for ‘Usability and
efficiency’ than scenario 3, because only interactions originating from the UI service are
checked. Only performing checks on UI service interactions reduces coupling to the
domain model. Different implementation options exist for other services, which are

Security in Domain Driven Design
By Michiel Uithol

48

accessed through the security service by the UI service or are allowed to perform actions
in a manner resembling the Model-View-Controller model (MVC) [GOF95]. These
services (acting as View) can query the domain classes (acting as the Model) and directly
receive events. Interactions with the domain model, however, can be routed through the
security service (acting as Controller).

Scenario 5 improves the ‘Usability and efficiency’ of the case study by separating the
security functionality from the tunnelling functionality. Tunnelling and interception
logic concerning the authorisation is moved into security adapter implementation. This
scenario is transparent because well known patterns of adapter/proxy/façade are used in
conjunction with the application of the MVC model. In this MVC model the adapters
implement the Controller function.
In this scenario either adapters are created for the domain implementation and all
services use these adapters, or the UI service also communicates with an adapter for each
specific service.

Scenario 6 adds Aspect-Oriented Programming to the case study. The introduction of
AOP results in decoupling of the authorisation checks from the domain functions. Also
the coupling between the adapters and the security service is removed in the application
model, which results in a better separation of concerns. This scenario has a high
‘Usability and efficiency’ because the crosscutting concern of security is handled more
efficiently than in the reference scenario. AOP does not add to the transparency of the
implementation because most developers have no experience with AOP and do not
know the implications of applying AOP in practice.

Scenario 7 moves AOP point-cuts from the adapters to the domain model. Moving the
AOP point-cuts to the domain model eliminates the need for the adapter
implementation. Therefore this scenario has a complete conformance with the DDD goal
of separating security into a service. This scenario has a high ‘Usability and efficiency’
because the crosscutting concern of security is handled more efficiently than in the
reference scenario. AOP does not add to the transparency of the implementation because
most developers have no experience with AOP and do not know the implications of
applying AOP in practice.

Selection
Only the best scoring scenarios from Table 2 are implemented. Deriving from the main
goals as presented in Chapter 1, the most important criteria involve the application of
correct working security and compliance with the DDD principles.

It is not useful to implement scenarios that do not offer the same level of security as the
reference design. This disqualifies scenario 1 and 2 from implementation.

As seen in Table 2, scenario 5, 6 and 7 offer the most promising solutions to the problem
of introducing security as a service in DDD and have been implemented.

Security in Domain Driven Design
By Michiel Uithol

49

5.2 General implementation choices
Before describing the implementation phase for the three selected scenarios, some
general implementation choices are discussed.

As described before the already available case study was implemented in the C#
language, this means the .NET environment is used for the implementation scenarios.
However, the methods and techniques used in the scenarios are generic and can be
implemented in other programming languages than C#.

The application consists of five packages: the domain implementation package and four
packages containing one service each. The domain implementation package is where the
implementation of the domain model is located. The classes contained in the domain
implementation are depicted in Figure 5.

Services surrounding the Domain package are:
- The repository service, which is used to create and find instances of objects in the

different packages.
- The IO service, which is responsible for creating reports for users to display the

current state of the domain package and to handle batches of input commands.
- The UI service, which presents an interface through which the user can interact

with the application. This service also handles user input.
- The Security service, which is responsible for regulating authentication and

authorisation in the application implementation.

The package structure is very similar for the three scenario implementations. The main
difference between implementations is of the UI and IO services being connected to the
adapters instead of the domain classes.
Besides these changes, the contents of the repository, UI, IO service and domain
implementation are the same in the three implementations in this chapter. The security
service is kept the same as much as possible, but changes the most.

Different user roles are included in the bank case implementation. These roles provide
an example for multiple access levels. An overview of the different roles available in the
bank case study was already discussed in section 3.1.

5.3 Scenario 5 implementation:
Security service as an adapter for the UI

The implementation of security adapters in the bank case result in restricting the actions
of the UI service. The UI service is not allowed to interact with the domain
implementation directly, but is only allowed to interact with the security adapters and
the other services in the application model.
Concerning the security service, other services are able to interact with the Security class
through the ISecurity interface. This interface allows access to the authentication
functionality. Within the security service, the Action class is known to provide the action

Security in Domain Driven Design
By Michiel Uithol

50

enumeration, which allows the UI service to identify the interactions it requests. The
SecurityException class must be known by other services to recognize the exceptions
raised by the security functionality. The other classes are used internally by the security
service to retrieve and represent users of the application and their roles, these classes are
private classes and thus cannot be accessed by classes outside the security service.
Other services used by the UI service are also required to communicate with the
adapters in the security package, as the function of the adapters is also to perform the
Controller function in this MVC model-like structure.

Figure 23: Class diagram of the adapter implementation

To perform actions in this application, the UI service authenticates with the security
implementation. Based on the authentication credentials supplied by the UI service, a
corresponding user object is created with an appropriate role set. This user
representation is saved and used by the security service to authorise actions of the UI
service.
Interactions with the domain implementation originating from the UI service are
handled by the security adapters. The adapter receives a request from the UI service and
checks if the action is allowed by consulting the permissions of the user’s role set. If any
restriction posed by the security functionality is violated, a security exception is raised as
illustrated in Code Fragment 2.

Security in Domain Driven Design
By Michiel Uithol

51

Public override string ToString()
{
 if(!security.user.RoleSet.IsPrintClientDetailsPermitted(this.client))

 {
 security.GenerateSecurityException(
 “You are not allowed to view the client details.”);
 }
 return this.client.ToString();
}
Code Fragment 2: Raising security exceptions in the ClientAdapter implementation

By raising a SecurityException the code execution in the ToString() method is stopped
and the exception is sent to the calling class.

The inner working of the adapters is straightforward, since methods from the domain
objects are mostly reflected in the adapters. Information contained in the domain objects
is retrieved by interacting with the adapters.
The security adapter implementations must ensure that no instances of domain objects
are returned, but only their adapter representations.
This wrapping of the domain objects is shown in Code Fragment 3.

Public List<AccountAdapter> GetAccounts()
{
 List<AccountAdapter> accountList = new List<AccountAdapter>();

 foreach (IAccount account in this.client.Accounts.Values)
 {
 accountList.Add(new AccountAdapter(account));
 }
 return accountList;
}
Code Fragment 3: Returning adapters in the ClientAdapter

The usage of adapters allows the adapter to be responsible for session management. In
this way it is always known which user is responsible for the performed action.

5.4 Scenario 6 implementation:
Security service integrated by AOP with adapters

For AOP there are multiple implementation options available depending on the
implementation platform that is selected. The programming language is important
because special compilers are required to weave AOP aspect code into source code.
Examples of these weavers are: AspectJ [ASPJ] for Java or PostSharp [POST] for .NET.
As discussed in section 2.2.2 the PostSharp weaver will be used in this thesis.

Security in Domain Driven Design
By Michiel Uithol

52

Figure 24: Class diagram with AOP point-cuts on join points in the adapters

If adapters are already present in an implementation the choice can be made to apply the
point-cuts to these adapters.
To perform actions the UI service authenticates with the security class implementation.
Based on the authentication credentials supplied by the UI service a corresponding user
object is created with the appropriate role set. This user representation is saved and used
by the security service to authorise new actions of the UI service.
Interactions with the domain implementation originating from the UI service are
handled by the security adapters.

In PostSharp defines several base types of aspects, one of these is the
OnMethodBoundary aspect [PDOC]. The OnMethodBoundary aspect overrides both
OnEntry, and OnExit methods. On entry of the method, the call is intercepted and the
code specified in the OnEntry method in the aspect is executed. On exit of the method,
the return value or the exception is received in the OnExit method, which allows altering
or filtering of the return values to match the user’s authorisation level. Other types of
aspects can be used to apply AOP at different locations and for different uses. Examples
are aspects that react to exceptions or that are invoked with getters and setters of
properties in a class.
The OnMethodBoundary aspect is useful in our case, because the aspect can regulate
whether or not to proceed with a method invocation and modify the response or throw
an exception.
The OnEntry advice is used to test the security conditions when a method is invoked.
Throwing an exception in this code segment protects access to the domain methods. This
behaviour is shown in Code Fragment 4.

Security in Domain Driven Design
By Michiel Uithol

53

Public class EditClientDetailAspect : OnMethodBoundaryAspect
{
 private readonly Action action;

 public EditClientDetailAspect(Action action)
 {
 this.action = action;
 }

 public override void OnEntry(MethodExecutionEventArgs eventArgs)
 {
 ClientAdapter clientAdapter = (ClientAdapter)eventArgs.Instance;

 if (!clientAdapter.user.RoleSet.IsEditClientPermitted(action,
 clientAdapter.client))
 {
 security.GenerateSecurityException(
 “You are not allowed to alter the client details.”);
 }

 }
}
Code Fragment 4: Aspect advice in EditClientDetailAspect

Code Fragment 4 displays the aspect called EditClientDetailAspect. This aspect is invoked
with an action, in this case either EditClientName or EditClientAddress, which is used to
check permission.
On invocation the OnEntry method retrieves the instance of the ClientAdapter in which
the method is inserted. This instance of the ClientAdapter has a reference to the user
object that represents the authentication of the user that is responsible for this action. The
role set of the user is checked and results in a security exception if the action is
disallowed. In case the action is allowed, the execution continues to the method that was
originally invoked. This sequence in the code is also shown in Figure 25.

Security in Domain Driven Design
By Michiel Uithol

54

Figure 25: Sequence diagram of the OnEntry advice

In order for the aspect advice to be applied, AOP requires point-cuts in the source code
as shown in Code Fragment 5.

[EditClientDetailAspect(Action.EditClientName)]
public void SetName(string firstName, string lastName)
{
 this.client.FirstName = firstName;
 this.client.LastName = lastName;
}

[EditClientDetailAspect(Action.EditClientAddress)]
public void SetAddress(string houseNumber, string street, string city)
{
 this.client.HouseNumber = houseNumber;
 this.client.Street = street;
 this.client.City = city;
}
Code Fragment 5: Join points with point-cuts in the ClientAdapter

Above the method SetName in Code Fragment 5 the point-cut declares that the advice
EditClientDetailAspect is applied. This aspect is applied to the action of editing of a
client’s name. The second example method, SetAddress, has the same aspect applied to
the action of editing a client’s address.

Security in Domain Driven Design
By Michiel Uithol

55

In the implementation the choice is made for explicit point-cuts in the source code so the
security aspect interceptions are clearly visible to the developer (see Code Fragment 5). By
using point-cuts in this way it is immediately clear to developers that both methods are
checked by security.
These point-cuts can also be specified in another way by using the assembly. This
method offers less clarity because it is not immediately clear what aspects apply at the
method level (see Code Fragment 6). By declaring the point-cuts using the assembly the
point-cut can be applied to several methods with one declaration.
In both examples in this fragment the Deposit method is targeted in the AccountAdapter
class.

[assembly: DepositAspect(
 AttributeTargetTypes = “Adapters.AccountAdapter”,
 AttributeTargetMembers = “Deposit”)]
[DepositAspect]
public void Deposit(decimal amount)
Code Fragment 6: Different ways of defining a point-cut in the AccountAdapter

Due to implementation specifics of the case study, not all aspects enjoy the same
versatility as the aspect that restricts access to editing or printing of client details, which
can be applied to multiple methods. An example of a less versatile aspect is the
DepositAspect shown in Code Fragment 7. This aspect is so specific it can only be applied
to one method in the adapters.

Public class DepositAspect : OnMethodBoundaryAspect
{
 public override void OnEntry(MethodExecutionEventArgs eventArgs)
 {
 AccountAdapter accountAdapter =
 (AccountAdapter)eventArgs.Instance;

 if (!accountAdapter.user.RoleSet.IsDepositPermitted(
 (Decimal)eventArgs.GetArguments()[0],
 accountAdapter.account))
 {
 security.GenerateSecurityException(String.Format(
 “You are not allowed to deposit {0} on this
 account.”, eventArgs.GetArguments()[0]));
 }
 }
}
Code Fragment 7: Aspect advice in DepositAspect

The DepositAspect in Code Fragment 7 checks if the amount deposited is allowed. The
amount passed to the Deposit method in the AccountAdapter is retrieved using
eventArgs.GetArguments()[0].
This aspect is specifically written to accommodate checking of the deposit method in the
AccountAdapter. The problems that prevent application to multiple methods are the
aforementioned retrieval of the amount and the method used in the RoleSet class. The
RoleSet class contains a specific method to handle a deposit transaction. If the RoleSet
class was structured in a way more adhering to the OO principles, this could have been
prevented.

Security in Domain Driven Design
By Michiel Uithol

56

This example shows the difficulties that are encountered to define one aspect that covers
crosscutting concerns. Already in the design phase the developer needs to consider
versatility and flexibility of the methods. If the RoleSet is designed with a method
IsTransactionPermitted one aspect can be created that handles all transactions:
withdrawals, transfers and deposits. In this implementation, this is separated in three
aspects.

Correctly and efficiently dealing with crosscutting concerns by using AOP is difficult on
the architectural level. Authorisation as a whole is a crosscutting concern, so in order to
deal efficiently with this concern one aspect can be defined that is applied to every
method that requires authorisation. The problem is that so many methods and properties
need to be checked, all with largely varying method signatures and with different fail
criteria. The diversity in these methods results in an aspect that probably contains a large
if/else structure or a large switch case on the action that is performed. This is a sign of
bad application of OO principles. This aspect can be split in multiple aspects that deal
with specific sub-sets of actions. A drawback is that if a sub-set becomes too small (i.e.
targets one method) the efficiency gain of using AOP is reduced.

5.5 Scenario 7 implementation:
Security service integrated by AOP

This scenario applies AOP as described in section 4.7. The point-cuts are aimed at the
domain implementation. This AOP variation results in different problems and options in
the implementation.

Figure 26: Class diagram with AOP point-cuts on join points in the domain implementation

Security in Domain Driven Design
By Michiel Uithol

57

Differences between the implementation with point-cuts aimed at the domain
implementation instead of the adapters lie in the retrieval of the user object by the
aspects. Determining which user is responsible for actions in the domain implementation
is harder in a multi UI service environment without altering the domain implementation.
This is because the domain implementation does not contain a definition of users and
authorisation. The issuers of the interactions with the domain implementation are not
known. In this case study implementation the connection between an instance of the UI
service and an interaction is quite easy because there is only one simultaneous user.
Multi UI service environments need a location to perform session management. This
could be, for example, performed with Windows Authentication in the .NET
environment.

Choosing PostSharp introduces some oddities in the development structure. With the
current PostSharp implementation as it is, point-cuts need to be declared in the domain
implementation. In the previous scenario, where point-cuts were defined in the adapters
this did not pose a problem as the adapters were already aware of the security
implementation.
If the domain implementation and the aspects are in different assemblies this has the
effect that a circular dependency is created between the aspects that use the domain
interfaces, and the domain classes being targeted by the aspects. To prevent this circular
dependency, the domain interfaces can be separated into a different assembly from the
domain implementation, or the aspects can be placed within the same assembly as the
domain implementation.
If this implementation would be made in Java using AspectJ this problem would not
occur because point-cuts are declared in the aspects.
Using PostSharp also has the drawback that it complicates debugging. Because weaving
is performed after the Visual Studio compiler has compiled the source code, the Visual
Studio debugger does not always accurately display the correct stack trace for aspect
code. Some exceptions thrown in the aspect code seem to have a different stack origin.

For this implementation, the aspects are placed in the same assembly as the domain
implementation because of the problems related to PostSharp.

Except for the difference that the aspects use the domain interfaces instead of the
adapters, this implementation contains the same AOP aspects as seen in the ‘AOP with
adapters’ implementation in section 5.4.

public class EditClientDetailAspect : OnMethodBoundaryAspect
{
 private readonly Action action;

 public EditClientDetailAspect(Action action)
 {
 this.action = action;
 }

 public override void OnEntry(MethodExecutionEventArgs eventArgs)
 {
 IClient client = (IClient)eventArgs.Instance;
 ISecurity security = Repository.Get<ISecurity>();

Security in Domain Driven Design
By Michiel Uithol

58

 if (!security.user.RoleSet.IsEditClientPermitted(action,
 client))
 {
 security.GenerateSecurityException(
 “You are not allowed to alter the client details.”);
 }
 }
}
Code Fragment 8: Aspect advice in EditClientDetailAspect

Code Fragment 8 shows the functionality corresponding EditClientDetailAspect in this
implementation. Compared to the adapter implementation as seen in Code Fragment 4,
the only difference is that the user object is retrieved from the security interface instead
of from the ClientAdapter.

[EditClientDetailAspect(Action.EditClientName)]
public void SetName(string firstName, string lastName)
{
 this.FirstName = firstName;
 this.LastName = lastName;
}

[EditClientDetailAspect(Action.EditClientAddress)]
public void SetAddress(string houseNumber, string street, string city)
{
 this.HouseNumber = houseNumber;
 this.Street = street;
 this.City = city;
}
Code Fragment 9: Join points with point-cuts in the Client class

As seen in Code Fragment 9 the point-cuts are moved from the adapter implementation to
the domain implementation. This introduces some unwanted pollution in the source
code of the domain implementation.
Besides these indicated differences the case study implementation works the same as
discussed in section 5.4.

Security in Domain Driven Design
By Michiel Uithol

59

Chapter 6
Measurements
This chapter presents and evaluates the measurements derived from the case study
implementations. These measurements provide a possibility to determine the usability of
the scenarios for developers.

The measurements taken for the new scenarios are compared with the measurements
performed on the reference implementation from section 3.2 to determine to which
extent these scenarios improve the reference implementation.
The measurements of the CBO and CC values in the implementations are performed by
using NDepend [NDEP08].
In the measurements of the CC values only the relevant classes are taken into account.
Relevant classes are the classes that have different implementation in each of the
scenarios. The relevant classes consist of the Domain, Aspect and Adapter classes.
NDepend is unable to correctly display measurements in case AOP aspects are used,
since it takes measurements after the aspects have been woven into the point-cuts. In the
scenarios that apply AOP a manual correction is applied to retain the correct
measurement.

First both CC and CBO measurement results are presented, after which both
measurements results are discussed in the concluding section.

6.1 Cyclomatic Complexity
To perform the CC measurements, NDepend will be used. In NDepend, the CC of a class
is the sum of the number of methods in this class and the number of specific expressions
seen in Code Fragment 10. By counting these expressions, the number of possible paths
through the method is counted.

If | while | for | foreach | case | default | continue |
goto | && | || | catch | ternary operator ?: | ??
Code Fragment 10: List of code expressions counted in CC [NDEP08]

Reference bank case study
The CC values calculated in the reference bank case study implementation discussed in
section 3.2 are shown in Table 3.

Domain CC CC/Method DP
Client 25 /14=1.786 11
Account 18 /10=1.8 8
Bank 9 /7=1.286 2
Total 52 Avg. 1.624 21
Table 3: The CC values of the reference implementation

Security in Domain Driven Design
By Michiel Uithol

60

Bank case study Adapters
The measurements derived from the bank case study with the security service
implementation using adapters discussed in section 5.3 are shown in Table 4.

Domain CC CC/Method DP
Client 14 /14=1 0
Account 14 /10=1.4 4
Bank 7 /7=1 0

Adapters CC CC/Method DP
ClientAdapter 18 /11=1.636 8
AccountAdapter 16 /10=1.6 6
BankAdapter 13 /9=1.444 6
Total 83 Avg. 1.347 24
Table 4: The CC values of adapter implementation

Bank case study AOP adapters
The measurements derived from the bank case study with the security service
implementation using AOP with adapters discussed in section 5.4 are shown in Table 5.

Domain CC CC/Method DP
Client 14 /14=1 0
Account 14 /10=1.4 4
Bank 7 /7=1 0

Adapters CC CC/Method DP
ClientAdapter 12 /11=1.091 2
AccountAdapter 10 /10=1 0
BankAdapter 11 /9=1.222 4

Aspects CC CC/Method DP
DepositAspect 2 /2=1 1
EditClientDetailAspect 3 /2=1.5 1
CreateAspect 5 /2=2.5 3
ViewClientDetailAspect 4 /2=2 3
WithdrawAspect 2 /2=1 1
MoneyTransferAspect 2 /2=1 1
Total 86 Avg. 1.309 20
Table 5: The CC values of the AOP adapter implementation

Bank case study AOP
The measurements derived from the bank case study with the security service
implementation using AOP with the domain classes discussed in section 5.5 are shown
in Table 6.

Security in Domain Driven Design
By Michiel Uithol

61

Domain CC CC/Method DP
Client 14 /14=1 0
Account 14 /10=1.4 4
Bank 7 /7=1 0

Aspects CC CC/Method DP
DepositAspect 2 /2=1 1
EditClientDetailAspect 3 /2=1.5 1
CreateAspect 5 /2=2.5 3
ViewClientDetailAspect 4 /2=2 3
WithdrawAspect 2 /2=1 1
MoneyTransferAspect 2 /2=1 1
Total 53 Avg. 1.378 14
Table 6: The CC values of the AOP implementation

6.2 Coupling Between Objects
Because of the relative small scale of the bank case study, the domain implementation
only consists of three classes that are used by services. The CBO measurements are
performed on the method level instead of the class level. The number of methods that
fan-in to the measured class or namespace gives a better indication of the degree of
coupling to the other objects in this relatively small case study.

The amount of coupling concerning the domain implementation is measured by
counting the number of methods from other specified classes that interact with the
domain implementation.

Reference bank case implementation
The reference bank case study implementation from section 3.2 contains a
Bank/Client/Account implementation in the domain implementation that has Fan-in
from other services and the security functionality. The Bank/Client/Account
implementation also has Fan-out towards the security functionality in the domain
implementation.

Fan-out from all services towards the Bank/Client/Account classes
Methods from all services directly using domain classes 22

Security functionality Fan-out towards Bank/Client/Account classes
Security methods using domain classes 10

Security Fan-in from Bank/Client/Account classes
Domain methods directly using security functionality 17

Security in Domain Driven Design
By Michiel Uithol

62

Figure 27: Coupling in the reference implementation

Adapters bank case implementation
The bank case study with the security service implementation using an adapter as seen
in section 5.3, has a clear and measurable fan-out from the security service towards the
domain implementation.

Other coupling to measure is the coupling between the adapters and the rest of the
security service. The security service classes are implemented in the same way as in the
reference implementation.

Security service Fan-out to domain implementation
Security service (including adapters) methods directly
using domain classes

32

Security service Fan-in from the adapters
Adapters to other security service classes 13

Figure 28: Coupling in the adapter implementation

AOP adapters bank case implementation
The measurements derived from the bank case study with the security service
implementation using AOP with adapters as seen in section 5.4.
Here the adapters are moved out of the security service so their coupling is measured
separately.

Security in Domain Driven Design
By Michiel Uithol

63

Security service Fan-out to the domain implementation
Methods directly using domain classes (Domain state based
checks)

7

Security service Fan-in from the adapters
Adapter methods directly using security functionality 3

Adapter method Fan-out to the domain implementation
Adapter methods directly using domain classes 25

Figure 29: Coupling in the AOP adapter implementation

Bank case study AOP
The measurements derived from the bank case study with the security service
implementation using AOP to the domain implementation as seen in section 5.5.
Here adapters are removed from the coupling overview and the coupling from other
services to the domain implementation is reintroduced.

Fan-out from all services towards the domain implementation
Methods from all services directly using domain classes 22

Security service Fan-out towards the domain implementation
Methods directly using domain classes (Domain state based
checks)

7

Security in Domain Driven Design
By Michiel Uithol

64

Figure 30: Coupling in the AOP implementation

6.3 Measurement comparison
The measurements presented in the previous two sections provide the possibility to
compare the complexity and coupling for the implemented scenarios. This also provides
the possibility to compare scenarios with the reference implementation from section 3.2.

6.3.1 Cyclomatic Complexity
The CC measurements indicate how easy it is to implement and maintain the classes in
the scenarios.

Total CC CC per method DP
Reference scenario 52 1.63 21
Adapter scenario 83 1.35 24
AOP adapters scenario 86 1.31 20
AOP Domain classes 53 1.38 14
Table 7: Overview of the results of the Total CC, CC per method and DP measurements

The reference scenario domain implementation has a CC value of 52, which means circa
1.6 CC per method. In total the domain classes contain 21 Decision Points.

The regular adapter implementation reduces the CC of the domain implementation to
35, at the cost of increasing the total CC to 83. The average CC per method of the domain
and adapters is lowered to circa 1.3. A slight increase in DP from 21 to 24 is caused by
specifics of the adapter implementation. The positive effect of reducing the complexity in
the domain is partially compensated by added complexity in the adapters. As the DP
value shows, the overall complexity is not reduced, but is merely shifted.

In both AOP implementations, the point-cut annotations do not influence the CC values
in the application because they do not influence the number of DP’s.

The AOP implementation with adapters retains the lowered complexity in the domain
implementation. By introducing AOP complexity is removed from the adapters and
placed in the aspects. Total CC is higher with an increase to 86, average CC per method
is slightly reduced to a lower region of 1.3. The impact of efficiently dealing with

Security in Domain Driven Design
By Michiel Uithol

65

crosscutting concerns is partially negated by the adapter implementation and results to a
reduction of DP from 21 to 20.

The AOP implementation with point-cuts aimed towards the domain implementation
eliminates the need for the intermediary adapters. The total CC amounts to 53, which is
approximately the same as seen in the reference scenario with 52. The CC per method
remains in the region between 1.3 and 1.4 compared to 1.6 in the reference scenario. The
implication of using AOP to reduce complexity of crosscutting concerns is clearly
reflected in this scenario because the DP value is reduced to 14. This is a large decrease
when compared with the reference scenario where 21 DPs are found.

6.3.2 Coupling Between Objects
The CBO values indicate to what extent and in which manner the security functionality
is separated from the domain-related functionality.

Separation of the security functionality into a DDD service is achieved in all three new
case study implementations.
The remaining coupling between the security service and the domain implementation is
measured using the CBO method.

D
om

ai
n

Fa
n-

in

D
om

ai
n

Fa
n-

in

fr
om

 s
ec

ur
ity

ad

ap
te

rs

D
om

ai
n

Fa
n-

in

fr
om

 s
ec

ur
ity

D
om

ai
n

Fa
n-

in

fr
om

 o
th

er

se
rv

ic
es

D
om

ai
n

Fa
n-

ou
t t

o
se

cu
ri

ty

C
ou

pl
in

g
se

cu
ri

ty
 a

nd

se
cu

ri
ty

ad

ap
te

rs

Reference scenario 32 0 10 22 17 0
Adapter scenario 32 25 7 0 0 13
AOP adapters scenario 32 25 7 0 0 3
AOP domain classes
scenario

29 0 7 22 0 0

Table 8: Overview of the results of the CBO measurements

The reference scenario presents the implementation where the security implementation
is located in the domain implementation. A strong coupling between the
bank/client/account implementations and the security implementation exists. The fan-in
consists of 17 methods from the domain classes that use a part of the security
implementation. The fan-out from outside the domain classes consists of 32 methods that
use a domain object (this includes 10 calls from the security implementation).
All three new implementations with security as a service succeed in eliminating the fan-
in from the domain implementation.

The regular adapter implementation introduces the adapters together with a strong
coupling to the security service. The fan-out from the security service towards the
domain implementation stays the same with 32 methods that use domain objects. The

Security in Domain Driven Design
By Michiel Uithol

66

adapter implementations are coupled to the security implementation by 13 methods
using objects in the security implementation.

The AOP implementation with adapters mostly eliminates the coupling between the
adapters and the security service. Only 3 adapter methods still make use of the security
implementation objects. In this implementation a clear separation is found between
adapter methods using the domain implementation with 25 methods and the methods
used by the security implementation with 7 methods that use domain objects for domain
state based checks.

The AOP implementation with point-cuts aimed towards the domain implementation
has no need for adapters and only the 7 methods that use domain classes for domain
state based checks remain. Besides these security methods the other services now
interact with the domain implementation and cause 22 methods to use the domain
classes, the same number as seen in the reference implementation.

6.4 Results
The scenarios are compared on the areas defined in our goals:

- Separating security functionality and domain-related functionality
- Usability and efficiency
- DDD principle compliance

Separating security functionality and domain-related functionality
In all prototype implementations the fan-out from the domain implementation is
removed from the application. This means the security functionality is separated from
the domain-related functionality in the domain implementation.
Concerning CBO the AOP implementation with point-cuts towards the domain
implementation causes the lowest coupling towards the domain implementation.

Usability and efficiency
In all implementations the average CC per method becomes lower than seen in the
reference implementation. The CC per method drops from 1.6 per method to around 1.3
per method. This indicates that the complexity in the relevant parts of the
implementation is reduced. All implementations result in approximately the same value
for complexity per method.
The DP measurements indicate that the AOP implementation with point-cuts towards
the domain implementation achieves the lowest DP value in the measured classes.

DDD principle compliance
The AOP implementation with adapters results in removing most of the coupling
between the adapters and the security service.
The implementation with adapters does not comply fully with the DDD target situation.
As it is implemented, the adapters are part of the security service. This is not a strict
separation of concerns, because forwarding the requests from other services is not the

Security in Domain Driven Design
By Michiel Uithol

67

concern of the security service. In case the adapters are relocated into a glue layer the
adapter scenarios do comply with the DDD target situation.

The AOP implementation with point-cuts in the domain implementation removes the
need for intermediary adapters. This design results in a simple layout that resembles the
sunflower model depicted in Figure 3.
This AOP implementation complies with the requirements stated in the goals. However,
a drawback is introduced by the implementation in .NET (PostSharp). This
implementation requires that the point-cuts are defined in the targeted class or assembly.
This causes the point-cuts towards the domain implementation to be known in the
domain implementation, which is undesirable behaviour because the point-cuts are a
part of the security functionality. This means the domain implementation has
dependencies on a service. In AspectJ (for Java) the point-cuts are declared in the
aspects, this means this unwanted behaviour does not appear.

Conclusion
Concerning the criteria defined in our goals it becomes clear that the two AOP
implementations are the most compliant with the DDD target situation as presented in
section 3.3.
Both AOP implementations come closest to the DDD target situation, although both
have minor problems. The prototype implementation with AOP point-cuts in the
domain implementation is the most elegant solution, as it is closest to the DDD target
situation and provides the highest level of decoupling from the domain implementation
and a reduction in application complexity.

Security in Domain Driven Design
By Michiel Uithol

68

Chapter 7
Conclusion

This chapter presents the conclusions of this Masters assignment. The results from the
measurements from Chapter 6 are compared to the initial goals from Chapter 1. This
comparison results in guidelines to the implemented cases. The guidelines are presented
to recommend the application possibilities.

7.1 Guidelines and recommendations
This thesis has shown that a security service that complies with the DDD target situation,
as proposed in section 3.3, is possible in the bank case study. The compliance with the
DDD target situation is achieved by using AOP. Achieving the separation of the security
functionality from domain-related functionality is difficult without AOP.

As a result of this research the scenario with AOP point-cuts towards the domain
implementation is recommended over the other scenarios.
AOP with point-cuts towards the domain implementation provides the best compliance
with the DDD principles while achieving a reduction in the complexity of the
application.

In situations where AOP point-cuts in the domain implementation are unwanted, the
scenario with AOP in the adapters is a feasible solution. This scenario is preferred over
the regular adapter implementation because an increased separation of concerns is
achieved. This scenario is also usable with already existing adapters.

Considering the goals of this Masters assignment the adapter scenario is the least
recommended. This scenario has the benefit that it is usable with current techniques and
current adapters. The usage of adapters has the benefit that developers do not need the
knowledge, training or technology that is required for the AOP solutions. This scenario
has the drawback that the same result is achieved with more source code, which

Recommendations for integrating the security service AOP
The principle of AOP point-cuts in the domain implementation complies with the DDD
principles. The point-cuts in the domain implementation introduce the risk of aspect
overuse. When aspects are overused, they could implement domain logic. In DDD the
domain objects should incorporate their behaviour and domain logic.
An added issue in this scenario is user identity, since actions in the domain
implementation need to be correlated with a user.
Point-cuts to the domain implementation yield a significant reduction in the number of
decision points because of the crosscutting aspect of security.

Security in Domain Driven Design
By Michiel Uithol

69

When AOP is chosen, it should be used efficiently. For AOP to work efficiently the
application must facilitate the usage of AOP. An application layout adhering to Object
Oriented principles facilitates efficient usage of AOP.
Correctly and efficiently dealing with crosscutting concerns by using AOP is difficult on
the architectural level. The problem is that so many methods and properties need to be
checked, all with largely varying method signatures and with different fail criteria with
different error messages. When this variation concerns one crosscutting concern, it
should ideally be handled by one aspect.
This one aspect can be split in multiple aspects that deal with specific sub-sets of actions.
A drawback is that if a sub-set becomes too small (i.e., targets one method) the efficiency
gain of using AOP is largely reduced.

During the implementation of the AOP scenarios we found that aspects are also suitable
to enforce business rules in the domain implementation. But according to the DDD
principles the business logic should remain in the domain classes. An example from the
case study is the checking for negative deposits, this is a domain logic issue and should
not be handled by an aspect.
The goal of AOP should be about efficiently removing crosscutting concerns out of
domain implementation, not removing business logic.

7.2 Evaluation
The main goals of this Masters assignment was to provide insight into the coupling of
services in DDD and to find the best design options to separate security functionality
from domain-related functionality.

Clarifications about DDD, and insight into the coupling of services in DDD resulted in
using the CBO metric to illustrate the different kinds of services in a DDD environment.
This insight provided the possibility to determine an approach to separate a service that
requires the domain implementation to interact with it from the domain implementation.
The security functionality has to be aware of interactions with the domain classes, before
the interactions reach the domain implementation.

To find the most suitable design options a case study has been chosen where the
problems with separating the authentication and authorisation functionality from the
domain implementation were clear. Based on this situation a target DDD situation has
been presented with different criteria. The formalisation of these requirements resulted
in a reference design to which new designs have been compared. Different designs have
been presented, each with their own advantages and disadvantages. After creating the
designs, a selection had to be made due to the number of options. This selection was
difficult because there are no metrics for measuring coupling on the model level.
Without actual implementation of the classes, known metrics as described in [MOOD95],
[CHID94] cannot be used because these metrics involve the analysis of source code. In
this Masters assignment the model only consisted of a package structure with an outline
of the possible classes within these. It modelled how the interactions between these
packages would take place.

Security in Domain Driven Design
By Michiel Uithol

70

The most promising design scenarios have been selected for implementation. The
implementation resulted in more clarity about the usability of the scenarios, and
revealed problems with defining the location of point-cuts in PostSharp.
After the implementation, the measurements provided the knowledge about the actual
impact and reduction of coupling in the case study application.

Based on the knowledge gained in the scenario implementation, the AOP design can be
applied to the placing of security within DDD. The solutions to the problems in the case
study are also applicable for other DDD implementations. By using AOP the security
functionality has knowledge about the interactions with the domain implementation and
the first main problem stated in section 1.2 is resolved. The second main problem stated
in section 1.2 was that separation becomes problematic when the state of the domain
implementation plays a role in the access to the domain implementation.
Because the state of the domain must be considered for authorisation, the security
functionality has domain specific checks embedded in the functionality. This still
reduces the portability of the security functionality. The domain state checks are
essential complexity introduced by access control.

The advice is to implement security with AOP because it provides benefits by separating
the concern of security into a service. Instead of security scattered throughout the
domain implementation.
The PostSharp problem is specific for the PostSharp implementation. Other AOP
implementations doe not have the problem that point-cuts should be declared in the
domain implementation.

7.3 Future work
Session management is still an open issue when AOP point-cuts are used in the domain
implementation. This issue is not resolved within this Masters assignment.

This Masters assignment was restricted to solutions that are platform-independent.
Interesting topics related to this Masters assignment are platform-specific solutions. For
both .NET and Java specific security frameworks and features exist.

Code Access Security (CAS) in the .NET environment can be used in the code to regulate
access based on Windows user authentication. This can be a solution for authentication
in an environment with windows clients.

In the Java environment opportunities are provided by Spring Security [ACEG08] and
JBoss Seam [SEAM07].
Spring security was formerly known as Acegi security. Spring security is a solution for
the Java EE platform and can be used as a part of the Spring framework. Its compliance
with the DDD principles is unknown. Spring security by default provides the security
infrastructure for a web-based architecture. The Spring security implementation also
makes use of AOP.

Security in Domain Driven Design
By Michiel Uithol

71

JBoss Seam is an application framework for EJB 3.0. JBoss Seam combines the two
frameworks Enterprise JavaBeans (EJB3) and Java Server Faces (JSF). It greatly reduces
the amount of glue code needed when working with both frameworks.
JBoss Seam security is a part of the application framework and provides the security
functionality needed in this framework. For this security functionality and the JBoss
Seam functionality, the compliance with the DDD principles is also unknown.

In this Masters assignment, issues related to web deployments were not included.
Further research can be performed by reviewing how the result of this Masters
assignment applies to web-deployed applications.
When a web-deployed application is used the authentication procedure can be coupled
to web-server sessions.
If the AOP scenario is reused in a web deployment, it is unknown what the restrictions
are on the AOP implementation.
A final question concerning web-deployed applications could be how to map the
application model onto a three-tier model [ECKE95], which is widely used for web-
deployments.

Security in Domain Driven Design
By Michiel Uithol

72

References
[ACEG08] Interface21, “Acegi Security - Acegi Security System for Spring”, accessed

March 2008, http://www.acegisecurity.org/
[AOP08] Markus Voelter, “Aspect-Oriented Programming in Java”, accessed March 2008,

http://www.voelter.de/data/articles/aop/aop.html
[ASPJ] The Eclipse Foundation, “The AspectJ Project”, accessed March 2008,

http://www.eclipse.org/aspectj/
[BANK07] Sogyo, “Bank case”, August 2007, Code & documentation
[BROO86] Fred Brooks, “No Silver Bullet – Essence and Accident in Software Engineering”,

Proceedings of the IFIP Tenth World Computing Conference, pp. 1069-1076,
1986

[CCMB89] Thomas J. McCabe / Charles W. Butler, “Design Complexity Measurement and
Testing”, Communications of the ACM, 32, pp. 1415-1425, December 1989.

[CHID94] Chidamber / Kemerer, “A Metric Suite for Object-Oriented Design”, IEEE
Transactions on Software Engineering, vol. 20 no. 6, June 1994, pp. 476-493.
http://web.cs.wpi.edu/~gpollice/cs562-s05/Readings/CKMetrics.pdf

[COMP03] Trey Guerin / Richard Lord, “How role-based access control can provide security
and business benefits”, November 2003,
http://www.computerworld.com/securitytopics/security/story/0,10801,86699,
00.html

[COOK06] William R. Cook / Ali H. Ibrahim, “Integrating Programming Languages &
Databases: What’s the Problem?”, September 2006,
http://www.odbms.org/experts.html#article10

[DDDO] Domain Language Inc., “Domain-Driven Design: What Is It?”, accessed March
2008, http://www.domaindrivendesign.org

[DDDO03] OOPSLA, “OOPSLA Domain Driven Design”, 2003 / 2006 / 2007,
http://www.oopsla.org/oopsla2003/files/tut-32.html
http://www.oopsla.org/2006/submission/tutorials/domain-
driven_design:_putting_the_model_to_work.html
http://www.oopsla.org/oopsla2007/index.php?page=sub/&id=76

[DDMD] Eric Evans, “Domain-Driven / Model-Driven”, February 2004,
http://domaindrivendesign.org/discussion/blog/evans_eric_ddd_and_mdd.h
tml

[DIJK74] E. W. Dijkstra, “On the role of scientific thought”, Selected writings on
Computing: A Personal Perspective, New York, NY, USA: Springer-Verlag
New York, Inc., pp. 60–66

[EADD07] Marc Eaddy / Alfred Aho / Gail C. Murphy, “Identifying, Assigning, and
Quantifying Crosscutting Concerns”, International Conference on Software
Engineering: Proceedings of the First International Workshop on
Assessment of Contemporary Modularization Techniques p. 2 , 2007

Security in Domain Driven Design
By Michiel Uithol

73

[ECKE95] Wayne Eckerson, “Three Tier Client/Server Architecture: Achieving Scalability,
Performance, and Efficiency in Client Server Applications.”, Open Information
Systems 10, 1 (January 1995): 3(20)

[EVAN03] Eric Evans, “Domain Driven Design: Tackling Complexity in the Heart of
Software”, Addison-Wesley Professional 2003, ISBN-13: 978-0321125217

[EVAN06] Eric Evans / edited by Abel Avram and Floyd Marinescu, “Domain-Driven
Design Quickly”, December 2006,
http://www.infoq.com/minibooks/domain-driven-design-quickly

[GOF95] Erich Gamma / Richard Helm / Ralph Johnson / John M. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software”, Addison-Wesley
Professional 1994, ISBN-13: 978-0201633610

[FOWL02] Martin Fowler, “Patterns of Enterprise Application Architecture”, Addinson
Wesley Professional 2002, ISBN-13: 978-0321127426,
http://martinfowler.com/eaaCatalog/

[HAYW04] Dan Haywood, “MDA: Nice idea, Shame about the…”, TheServerSide, May
2004, http://www.theserverside.com/tt/articles/article.tss?l=MDA_Haywood

[IBMR06] IBM Research, “Model-Driven Software Development”, IBM Systems Journal
“MDSD” Volume 45 Number 3 2006,
http://www.research.ibm.com/journal/sj/453/hailpern.html p.451
http://www.research.ibm.com/journal/sj/453/balmelli.html p.569

[JAVA08] SUN, “Java.com: Java + You”, accessed March 2008, http://www.java.com/en/
[KICZ96] G. Kiczales / J. Irwin / J. Lamping / J.-M. Loingtier / C. V. Lopes / C. Maeda /

A. Mendhekar, “Aspect-oriented programming”, ACM Computing Surveys,
28(4es):154, 1996.

[LADD02] Ramnivas Laddad, “Separate software concerns with aspect-oriented
programming”, Javaworld.com, January 2002,
http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-
aspect.html?page=1

[MDA04] Alan Brown, “An introduction to Model Driven Architecture”, IBM Developer
Works, February 2004,
http://www.ibm.com/developerworks/rational/library/3100.html

[MOOD95] Fernando Brito e Abreu, “Design Quality Metrics for Object-Oriented Software
Systems”, ERCIM News No.23 – October 1995

[MSFT08] Microsoft Corporation, “Microsoft .NET Framework”, accessed March 2008,
http://www.microsoft.com/NET/

[NDEP08] SMACCHIA.COM S.A.R.L, “NDepend”, accessed March 2008,
http://ndepend.com/

[NILS06] Jimmy Nilsson, “Applying Domain Driven Design and Patterns”, Addison-
Wesley Professional 2006, ISBN-13: 978-0321268204

[ORM97] Scott W. Ambler, “Mapping Objects to Relational Databases”, 1997 modified in
2000,
http://www.crionics.com/products/opensource/faq/docs/mappingObjects.pd
f

[OMG08] Object Management Group Inc., “Object Management Group”, accessed March

Security in Domain Driven Design
By Michiel Uithol

74

2008, http://omg.org/
[PARN72] D. L. Parnas, “On the Criteria To Be Used in Decomposing

Systems into Modules”, Communications of the ACM,
15(12):1053–1058, 1972.

[PDOC] Gael Fraiteur and the postsharp.org Community, “PostSharp 1.0 Online
Documentation”, accessed March 2008, http://doc.postsharp.org/

[PIAB07] Tom Hollander, “Announcing the Policy Injection Application Block”, Microsoft
Corporation, accessed March 2008,
http://blogs.msdn.com/tomholl/archive/2007/02/23/announcing-the-policy-
injection-application-block.aspx

[POST] Gael Fraiteur, “PostSharp - Bringing AOP to .NET”, accessed March 2008,
http://www.postsharp.org/

[SDWZ07] E. van Dillen / R. Wolter / T. Zeeman, “Domain Driven Design: Achtergronden
en ervaringen uit de praktijk”, Software Release magazine April 2007,
http://www.sogyo.nl/wp-
content/uploads/Publicaties/DDD_SD_April_2007.pdf

[SEAM07] Red Hat Middleware LLC, “JBoss.com - JBoss Seam”, accessed March 2008,
http://jboss.com/products/seam

[SMAL08] Smalltalk.org and Active Information Corporation, “Smalltalk.org”, accessed
March 2008, http://www.smalltalk.org/

[SRIN07] Srinivasan Tharmarajah, “Aspect Oriented Programming in Domain Driven
Design”, August 2007,
http://homepages.cwi.nl/~paulk/thesesMasterSoftwareEngineering/2007/Srin
ivasanTharmarajah.pdf

[WBMC03] Rebecca Wirfs-Brock / Alan McKean, “Object Design: Roles, Responsibilities,
and Collaborations”, Addison-Wesley Professional November 2002, ISBN-13:
978-0201379433

[WOLT05] Ralf Wolter, “Thesis”, 2005, Sogyo
[YDDD] Yahoo Domain-Driven Design discussion group, “domaindrivendesign :

Domain-Driven Design”, accessed March 2008,
http://tech.groups.yahoo.com/group/domaindrivendesign/

[YASE07] Yasser EL-Manzalawy, “Aspect Oriented Programming”, accessed March 2008,
http://www.developer.com/design/article.php/3308941

