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We present a measurement study on compositions of Decentralized Finance (DeFi) protocols, which aim to disrupt traditional finance
and offer services on top of distributed ledgers, such as Ethereum. Understanding DeFi compositions is of great importance, as they
may impact the development of ecosystem interoperability, are increasingly integrated with web technologies, and may introduce
risks through complexity. Starting from a dataset of 23 labeled DeFi protocols and 10,663,881 associated Ethereum accounts, we study
the interactions of protocols and associated smart contracts. From a network perspective, we find that decentralized exchange (DEX)
and lending protocol account nodes have high degree and centrality values, that interactions among protocol nodes primarily occur
in a strongly connected component, and that known community detection methods cannot disentangle DeFi protocols. Therefore,
we propose an algorithm to decompose a protocol call into a nested set of building blocks that may be part of other DeFi protocols.
This allows us to untangle and study protocol compositions. With a ground truth dataset we have collected, we can demonstrate
the algorithm’s capability by finding that swaps are the most frequently used building blocks. As building blocks can be nested, i.e.,
contained in each other, we provide visualizations of composition trees for deeper inspections. We also present a broad picture of
DeFi compositions by extracting and flattening the entire nested building block structure across multiple DeFi protocols. Finally, to
demonstrate the practicality of our approach, we present a case study that is inspired by the recent collapse of the UST stablecoin in the
Terra ecosystem. Under the hypothetical assumption that the stablecoin USD Tether would experience a similar fate, we study which
building blocks and, thereby, DeFi protocols would be affected. Overall, our results and methods contribute to a better understanding

of a new family of financial products.
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1 INTRODUCTION

Decentralized Finance (DeFi) stands for a new paradigm that aims to disrupt established financial markets. It offers
financial services in the form of smart contracts, which are executable software programs deployed on top of distributed
ledger technologies (DLT) such as Ethereum. Despite being a relatively recent development, we can already observe
rapid growth in DeFi protocols enabling lending of virtual assets, exchanging them for other virtual assets without
intermediaries, or betting on future price developments in the form of derivatives like options and futures. The term
“financial lego” is sometimes used because DeFi services can be composed into new financial products and services.
As an example of a DeFi composition, consider Figure 1, which illustrates a user interacting with the Iinch decentral-
ized exchange (DEX) aggregator Web service!. The user holds an amount of USDT tokens and wants to swap them to
KYL tokens. Using the Web application and her externally owned account (EOA), she creates a transaction against the

linch contract, which in turn triggers a sequence of two swaps on two DeFi protocols within the same transaction,

Uhttps://app.linch.io (this and all the following links were accessed on June 15 2022)
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Fig. 1. A DeFi composition where USDT tokens are swapped against KYL tokens through the DeFi service Tinch in a single transaction.
linch executes the swap sequentially through the DeFi services SushiSwap and UniSwap, using WETH as an intermediary token. In
the transaction trace graph, we can see the user calling the 7inch smart contract, which in turn triggers several calls to DeFi protocol-,
and token smart contracts.

from USDT to WETH on SushiSwap and thereafter from WETH to KYL on UniSwap. In this paper, we study such single

transaction DeFi interactions and the networks that arise when combining multiple DeFi transactions.

1.1 Motivation

In 2021, the total value of tokens held by smart contracts underlying the DeFi protocols has reached 106 billion
USD [12], demonstrating rapid growth. As composability of DeFi protocols is frequently seen as one of the main
advantages (cf. [36]), there are multiple reasons why it is interesting to study DeFi compositions:

Ecosystem interoperability. While composability can be seen as an opportunity, single transaction compositions as
shown in Figure 1 currently only work within a single distributed ledger. Most of the emerging DLT scaling solutions,
such as sidechains [27, 38], rollups [40], and off-chain networks [15, 37], lead to multiple, somewhat isolated DeFi
ecosystems. Hence, composability is disrupted, as smart contracts on one platform cannot invoke contract functions on
another platform within a single transaction. Understanding which types of compositions are frequently used may help
in developing solutions to cross-chain [4, 20, 46, 52] composability. Until solutions are found, such knowledge can help
in deciding which services should be co-located, and which services could be separate.

Integration with Web technologies. Cryptoassets have started integrating with various Web technologies. For
example, the Brave? browser includes an integrated cryptoasset wallet and native use of BAT tokens, and various
applications from the commercial BitTorrent? ecosystem rely on the BitTorrent Token (BTT). This raises the question
regarding the interdependence between DeFi compositions and web technologies. Services like Furucombo? already
Zhttps://brave.com

3https://www.bittorrent.com
4https://furucombo.app
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illustrate that almost arbitrary DeFi compositions are constructed through Web interfaces. In order to develop an
understanding of this, however, it is important to identify compositions and their points of interaction in the first place.
Risks through complexity. After its deregulation in the early 2000s, the securitization market became more complex
and opaque. Financial institutions used new financial instruments to maximize their exposure in this market. They were
based on technical computer models and traded by highly leveraged institutions, many of whom did not understand the
underlying models. These instruments were highly profitable, but the lack of any infrastructure and public information
about them created a massive panic in the financial system that began in August 2007 [2]. DeFi protocols may offer
opportunities, such as technological innovation or new governance models. However, their composability adds additional
complexity and opaqueness to an already complex cryptoasset ecosystem, which currently has a market valuation of
about 1T USD?. If these protocols are not understood and adopted more broadly, they could have unforeseeable systemic
effects on financial markets and our society as a whole, as seen in the 2008 financial crisis [21]. A recent example
involving DeFi protocols is the collapse of the stablecoin protocol Terra and its associated cryptoassets LUNA and UST.
While the protocol did work as designed, its stabilization mechanism was not robust to significant selling pressure
in the advent of market participants panicking. This ultimately led to deleveraging spiral effects [22] destroying over
30B USD of value within a single week and rendering institutions with large exposures to LUNA or UST insolvent. In
addition, the stablecoin UST was used as part of compositions in many other DeFi protocols on the Terra blockchain
and through bridges on different blockchains, thus affecting the entire ecosystem [35].

Previous work (cf,, [10, 16]) has partially studied risks in the DeFi ecosystem, showing possible strategies that allow
rational agents to maximize their revenues by subverting the intended design of DeFi protocols, for example in DEXs
and lending protocols. However, none of the existing studies have systematically investigated compositions of DeFi

protocols, which form complex, interconnected financial instruments.

1.2 Contributions

Our work aims to analyze DeFi protocols and to develop a novel algorithmic method that helps to understand protocol

compositions. We can summarize our contributions as follows:

(1) We provide a manually curated ground truth of 1407 addresses from 23 DeFi protocols and derived 10,663,881
associated Ethereum smart contracts. These are labels that can be reused in future research. On this basis,
we propose two network abstractions, representing interactions among DeFi protocols and smart contracts
(Section 3).

(2) We study intertwined DeFi protocols from a macroscopic perspective by analyzing the topology of both networks.
We find that DEX and lending protocols have high degree and centrality values, and protocol interactions
primarily occur in a strongly connected component. We also find that known community detection algorithms
can only indicate DeFi compositions but cannot effectively disentangle them (Section 4).

(3) We address the microscopic transaction level and propose an algorithm for extracting the building blocks of DeFi
protocols. We apply the algorithm to all protocol transactions in our ground truth, identify the most frequent
building blocks, and find that swaps are the most frequent ones. We show how the observed space of compositions
looks like for the Aave protocol. Further, we also demonstrate, using Iinch and Instadapp as examples, how to

disentangle and visualize the building blocks of a single protocol as a treemap (Section 5.1).

Shttps://coinmarketcap.com/charts/
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(4) We present an overall picture of DeFi compositions by extracting and flattening the entire nested building block
structure across multiple DeFi protocols. The results show that DeFi aggregation protocols (1inch, Ox or Instadapp)
are, as expected, heavily intertwined with many other DeFi protocols, which confirms that our algorithm works
as intended (Section 5.2).

(5) Finally, we present a case study illustrating how a hypothetical run on the stablecoin USD Tether would affect
the building blocks of individual DeFi protocols. (Section 5.3). We detect a comparatively high dependency of
Curvefinance building blocks to the USDT cryptoasset.

We believe that our results are an essential contribution towards understanding DeFi compositions. On a microscopic
level, our proposed methods can be used to assess the composition of individual protocols. On a macroscopic level, they
show how DeFi protocols and their implementations are connected with each other. For this paper, we limit our scope to
the largest Ethereum Virtual Machine (EVM)-based blockchain Ethereum, but in principle the approach can be used and
applied to any other EVM-based platform. For reproducibility of results, we make our ground truth dataset, including
the labels as well as our source code, openly available at https://github.com/StefanKit/Untangling_DeFi_Composition.

2 BACKGROUND AND DEFINITIONS

We now establish preliminary terms and definitions that are used throughout this work and introduce the related works.

2.1 Ethereum Account Types

Ethereum is currently the most important distributed ledger technology (blockchain) for DeFi services [53]. It differs
from the Bitcoin blockchain conceptually as it implements the so-called “account model” with two different account
types. An externally owned account (EOA) is a “regular” account controlled by a private key held by some user. A code
account (CA), which is synonymous with the notion “smart contract”, is an account controlled by a computer program,
which is invoked by issuing a transaction with the code account as the recipient.

A CA must always be initially called by an external transaction originating from an EOA, but a CA can itself trigger
other CAs. In the latter case, the interaction, which is also known as “message”, is denoted as an internal transaction.
Several branches of internal transactions with varying depth can follow an external transaction, resulting in cascades,
which altogether are called traces.

CAs allow users to implement application-layer protocols, which are essentially programs that can follow some
standardized interface. Tokens are popular CA-based applications and a way to define arbitrary assets that can be
transferred between accounts. The program behind a token manages token ownership and can implement a standardized

interface like ERC20, which defines functions standardizing token transfer semantics.

2.2 Decentralized Finance (DeFi) Protocol

A DeFi protocol is an application-layer program that provides financial service functions such as swapping or lending

assets. More technically, we can define it as follows:

Definition 2.1. A DeFi protocol P is a decentralized application that facilitates specific financial service functions

defined and implemented by a set of protocol-specific code accounts.

The following properties distinguish DeFi services from traditional financial services: first, they are non-custodial,
meaning that no intermediary such as a bank or a broker holds custody of users’ funds. Second, they are permissionless,

meaning that anyone can use existing or implement new services. Third, they are transparent, which means that anyone
Manuscript submitted to ACM
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with the necessary technical capabilities and skills can investigate and audit the state of protocols. The fourth is that

DeFi protocols are composable.

2.3 DeFi Protocol Compositions

The last property, composability, is the most crucial for this work and requires more detailed description: CAs can
call each other, and their individual functions can be arbitrarily composed into new financial products and services
(“Financial Lego”) [49]. While this analogy is widely used in the literature, to the best of our knowledge, no work
investigates which are the basic composable building blocks of more complex financial services and how they are related.
Harvey et al. [19] refer broadly to composability as asset tokenization and networked liquidity, while Von Wachter
et al. [44] conceive composability narrowly as a repeated wrapping operation of tokens resulting in new derivative
products. However, as illustrated before in Figure 1, we note that DeFi compositions also involve CAs, which are not
tokens. Also, Engel and Herlihy [13] and Tolmach et al. [41] respectively discuss compositions only in the context of
automated market makers (AMMs) and of formal verification of CAs related to decentralized exchanges and lending
services, which is again a very narrow conception. Thus, there is no comprehensive, technically grounded definition for

DeFi compositions to the best of our knowledge. For our work, we define it as follows:

Definition 2.2. A DeFi protocol composition occurs when a protocol-specific account leverages, within a single

transaction, one or more accounts belonging to the same or another DeFi protocol to provide a novel financial service.

2.4 Related Work

Others studied networks closely related to the ones we investigated before us: Guo et al. [18] are amongst the first
to investigate the Ethereum transaction graph, finding that volumes moved and the numbers of transactions follow
a power law distribution, that the component structure follows a bow-tie model, and that negative assortativity is
plausibly explained by the presence of service providers such as exchanges. Chen et al. [7] conduct a systematic study of
Ethereum between 2015 and 2018 and exploit graph analysis measures to describe three different network constructions
(money transfer, smart contract creation, and smart contract invocation). Another systematic study has been conducted
by Lee et al. [24], who analyzed the local and global properties of interaction networks extracted from the entire
Ethereum blockchain statically finding heavy-tailed degree distributions. In a follow-up, Zhao et al. [54] analyzed
the temporal evolution of Ethereum interaction networks and found that they proliferate and follow the preferential
attachment growth model. Furthermore, several studies focus on the network of Ethereum’s tokenized assets: Somin et
al. [39], for instance, studied the combined graph of all fungible token networks, while Victor and Liders [43] explored
the networks of the top 1,000 ERC20 tokens individually. Frowis et al. [14] proposed a method for detecting token
systems independent of an implementation standard. Also, Chen et al. [8] conducted a systematic investigation of the
whole Ethereum ERC20 token ecosystem and analyzed their activeness, purpose, relationship, and role in token trading.
Other studies exploited network methods for the detection of specific nodes using graph-based approaches. Poursafaei
et al. [32] developed a method based on graph node feature extraction and graph representation learning techniques to
identify illicit nodes. Li et al. [25] and Ofori-Boateng et al. [30], instead, respectively use Topological Data Analysis
(TDA) to detect price anomalies and hidden co-movement in pairs of tokens, and for anomalous events detection in a
multilayer network. However, none of these related works considers networks that represent DeFi Protocols and their
relationships.

Manuscript submitted to ACM
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Another growing body of research concentrates on specific functions offered by individual DeFi protocols or types
of protocols. We are aware of many DEX-related measurements focusing on protocol-specific aspects, such as the
magnitude of cyclic arbitrage activity [47], the behavior of liquidity providers [48], or the role of oracles as providers of
external information [26]. Other studies focus on lending and borrowing services: Perez et al. [31] analyze liquidations
and related participants’ behavior in the DeFi protocol Compound, while Gudgeon et al. [17] compare market efficiency,
utilization, and borrowing rates in different lending protocols. Also, Wang et al. [45] provide methods to identify flash
loans in three different DeFi providers and measure their related activity. Finally, we are aware that von Wachter et
al. [44] investigate composability from an asset perspective and measure composability by identifying the number of
derivatives produced from an initial root asset. However, we apply a more technical, service-oriented perspective and
consider, to put it simply, a DeFi composition as being a computer program utilizing other programs’ functions.

Overall, we are not aware of previous studies providing a comprehensive picture of DeFi compositions across various
protocols. We also do not know any work that analyzes in detail the building blocks of individual DeFi protocols. With

this work, we want to close this gap.

3 DATASET AND NETWORK CONSTRUCTION

This section describes the data we collected and the network abstractions we constructed for subsequent analysis steps.

3.1 Dataset collection

To study DeFi compositions, we are interested in transactions between Ethereum code accounts associated with known
DeFi protocols. Thus, we used on-chain transaction data from the Ethereum blockchain and built a ground truth of

known CAs and their associations to DeFi protocols.

3.1.1 On-chain transaction data. While Ethereum’s history goes as far back as July 2015, DeFi only emerged as a
popular term around summer 2020, when these protocols first saw increased usage. This informed our choice of the
analysis time frame and the ability to refer to external sources providing information on popular, established DeFi
services. We used an OpenEthereum client and ethereum-etl® to gather all Ethereum transactions from 01-Jan-2021
(block 11,565,019) to 05-Aug-2021 (block 12,964,999). We collected each external transaction and also parsed its cascade
of internal transactions, which together give us the trace. For each transaction, we extracted the source and destination
account addresses, the transaction hash, the transferred value, the transaction type (call, create, or self-destroy), as well
as the trace ID, which indexes the transactions by their execution order. Additionally, we collected the method ID of the
4-byte input sequence, which allows us to identify the signature of called methods using the 4Byte lookup service.

To distinguish between CAs and EOAs, we gathered all code account creation transactions from the first CA created on
Ethereum until the end of our observation period. We also use these creation traces to associate each CA with its creator
CA. In total, we found 46,112,390 CAs and used the output byte sequence to identify 324,143 contracts conforming to
the ERC20 standard.

3.1.2  Ground truth data. To be able to analyze DeFi protocols, we need a ground truth dataset on which smart contracts
are part of a given protocol. We focus on the most relevant protocols regarding valuation and gas-burned between
06-Mar-2021 and 05-Aug-2021, using monthly samples of the top three total-value-locked (TVL) protocols from DeFi

®https://github.com/blockchain-etl/ethereum-etl
"https://www.4byte.directory/
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Pulse® for each financial service category. Additionally, we consider protocols including CAs of the top ten gas burner
list? in the observation period. The result defines the set of DeFi protocols we want to investigate. Table 1 reports
summary statistics for the 23 protocols in our sample, divided by category. The last column reports, for each protocol,
the average share of each protocol’s TVL with respect to the entire DeFi ecosystem, between March and August 2021. In
total, our 23 DeFi protocols cover more than 81% of the entire DeFi TVL. According to DeFi Pulse, in August 2021 more
than a hundred DeFi protocols existed, but only around 30 (of which 18 in our sample) had a TVL larger than 200M
USD. Most of the protocols in our sample are still the most relevant ones for TVL as of June 2022'°. In the following, we

briefly introduce the categories and protocols as reported by DeFi Pulse!!:

o Assets identify the category including cryptoasset management protocols, such as yield aggregators, that aim
at maximizing the value of a portfolio or basket of underlying assets. Harvestfinance, Yearn, Vesper, share a
similar mechanism, whereby they pool resources which are in turn invested in other DeFi platforms according
to different optimization strategies. Users are typically rewarded through tokenized assets. Convex enables
Curvefinance liquidity providers to earn additional rewards. Badger allows Bitcoin users to deposit tokenized
Bitcoin such as wBTC and consequently generate a yield, by following programmatic optimization strategies.
Similarly, RenVM bridges digital assets across DeFi ecosystems by minting ERC20 tokens on Ethereum with 1:1
ratio. Fei’s protocol builds on a decentralized stablecoin backed by cryptoassets exploited through yield strategies

established by the protocol’s governance.

Derivatives protocols allow issuing synthetic financial instruments in the DeFi ecosystem, either tracking other

cryptoassets or real-world off-chain assets. Synthetix, for instance, supports several real-world assets, such as fiat

currencies and metals, while dYdX allows investors to trade perpetual positions on the underlying cryptoassets.

Hegic enables the issuing of ETH and wBTC call and puts options. Futureswap users can open leveraged long and

short positions on cryptoassets. Nexus, instead, provides financial insurance instruments that cover potential

losses users might incur in; similarly, Barnbridge offers tools to hedge risk through its financial instruments.

e DEXs, i.e. Decentralized Exchanges, allow users to exchange cryptoassets. UniSwap, SushiSwap, Curvefinance,
Balancer all exploit Automated Market Makers (AMM), as well as bonding curves and constant functions to
algorithmically set the cryptoassets prices, while 0x is based on the order book mechanism. The Iinch protocol
aggregates information on liquidity from several DEXs and routes transactions to those offering the best prices.

e Lending protocols provide investors with automated markets for loanable funds: lenders issue interest-bearing

instruments and borrowers can take positions, typically conditional to the provision of collateral that covers

potential losses. Aave and Compound follow the model described above. Maker users lock their cryptoassets as
collateral and receive the DAI token in return. Instadapp follows a more complex scheme and acts mostly as an

aggregator of multiple DeFi protocols.

After identifying the most relevant DeFi protocols, we manually collected the CAs associated with each protocol.
Since this information is not available on the blockchain, we rely on off-chain and publicly available sources like protocol
websites and available documentation. We resolved conflicts of duplicated CA to protocol assignments and identical

names by querying CA addresses on Etherscan'? and uniquely assigned each CA address to its original protocol and

8https://defipulse.com/

https://ethgasstation.info/gas-burners

1910 out of the first 11 DeFi protocols for TVL in DeFi Pulse are in our dataset.

1DeFiPulse reports the protocols divided into five categories. We don’t include the Payment category because services like Polygon provide off-chain
functionality rather than composable financial services or products.

2https://etherscan.io/
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Table 1. Ground truth dataset summary statistics. Seed addresses were manually collected for each DeFi protocol. The extended seed
are heuristically derived and include also further created code accounts from the seed addresses.

Number of addresses

Protocol type Defi Seed Extended seed External calls % TVL
Protocol

Badger 64 278 258,773 1.09%

Convex 22 131 147,855 1.13%

Fei 40 37 146,691 0.28%

Assets Harvestfinance 101 803 119,631 0.46%

RenVM 15 15 234,161 0.86%

Vesper 44 44 94,189 1.19%

Yearn 3 3 243,036 3.54%

Barnbridge 40 46 55,588 0.17%

dydX 38 38 107,264 0.14%

Derivatives Futureswap 9 10 6484 0.04%

Hegic 8 8 8372 0.03%

Nexus 24 26 20,067 0.57%

Synthetix 271 272 611,942 2.55%

0x 28 50 2,094,335 -%

linch 15 10,338,305 1,277,641 0.52%

DEX Balancer 9 3473 281,530 2.29%

Curvefinance 163 267 745,672 9.28%

SushiSwap 12 1705 2,026,674 5.37%

UniSwap 15 54,038 28,394,798 8.30%

Aave 157 166 851,578 13.31%

. Compound 67 65 741,069 11.48%
Lending

Instadapp 72 32,770 97,080 7.39%

Maker 190 231,261 2,992,692 11.77%

obtained a unique label. We denote these manually collected data points as seed data and make them available as part of
our source code repository.

Next, we extended our seed data by implementing a heuristic that uses the creation transactions and identifies
the CAs deployed by each seed address. By default, all extended addresses inherit the label and protocol assignments
from the corresponding seed address. If the procedure leads to a conflict of labels for an address, we preserve the one
obtained through the heuristic. Combined with our seed data, these extended addresses form our extended seed data
set. Table 1 summarizes the number of seed and extended addresses collected for each DeFi protocol. It shows that
our automated expansion does not increase the number of addresses associated with DeFi protocols for assets and
derivatives. However, it massively expands the dataset for DEXs and lending protocols utilizing automated factory
contract deployments. In particular, more than 10 million additional CAs are associated with Iinch due to the factory
contract that deploys gas tokens. The last column shows the number of external transactions directed to each of our
DeFi protocols. The distribution is heterogeneous, and again the most relevant categories are DEX and lending. UniSwap
is the most frequently appearing one, with a gap of around one order of magnitude to the second one, which is Maker.

Manuscript submitted to ACM
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Fig. 2. Schematic illustration of constructed networks. The lower-level DeFi Code Account (CA) network represents interactions
between CAs. The higher-level DeFi Protocol Network models relations between DeFi protocols. Lower-level CA vertices are associated
with higher-level protocol vertices. CAs are triggered by EOAs or other CAs.

3.1.3 Dataset reduction. As we are only interested in known DeFi protocols, we finally limited and reduced the traces
data set to the subset of protocol traces, where the initial external transaction originating from an EOA triggers a CA
address in our extended seed dataset. This reduction allows us to investigate and interpret compositions within the

context of known protocols.

3.2 Network construction

In our analysis, we want to understand and discover relations between DeFi protocols and associated CAs. For that
purpose, as shown in Figure 2, we constructed networks consisting of DeFi traces on two abstraction levels: the
lower-level DeFi Code Account (CA) Network and the higher-level DeFi Protocol Network.

The DeFi CA Network includes all known ground truth CAs triggered by external transactions from arbitrary EOA
addresses and all CAs subsequently called by cascades of internal transactions. We note that CAs in the network can
or cannot be associated with a DeFi protocol in our ground truth dataset. We construct the network by filtering all
internal and external transactions between CAs from the protocol traces. Since repeated usage of DeFi services results in
recurring transaction patterns, we aggregate and count transactions with the same source and destination address.

The DeFi Protocol Network represents interactions between protocols. We constructed it by merging all DeFi CA
vertices associated with the same DeFi protocol into a single node. We note that we modeled both networks as a directed
graph, in which vertices represent either a protocol or a single CA. The weighted edges represent the aggregated set of

transactions between DeFi protocols or CAs.

4 TOPOLOGY MEASUREMENTS

We now analyze the constructed networks from a macroscopic perspective. Since our research focuses on understanding
DeFi compositions, we do not aim at conducting an encompassing study of the entire Ethereum topology, as it was
done in previous studies (see Section 2.4). This supports our choice to focus on a narrower number of targeted metrics

Manuscript submitted to ACM
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Table 2. Summary statistics of the analyzed networks.

DeFi CA network DeFi Protocol network
Nodes 2,536,371 43,624
Edges 3,472,757 84,789
Self-loops 6668 146
Average degree 1.369 1.944
Density 5.398e-07 4.456e-05

that provide relevant insights on composability aspects; other approaches that are beyond the scope of our work are
discussed in Section 6.2. The analysis of the degree distribution and centrality measures can help identifying the CAs
implementing core functionalities, and the reciprocity and assortativity provide additional insights on the relationships
across such CAs. To understand how CAs associated to the same protocols interact with each other, we investigate
how the network is separated in different components and whether known community detection algorithms identify
community structures that overlap or not with the protocols structures.

We start by reporting basic summary statistics for the DeFi CA network and the DeFi Protocol network in Table 2.
The main difference is in the network dimension, the latter being two orders of magnitude smaller. The presence
of self-loops indicates that some contracts include multiple functionalities and thus can also call themselves. Both
networks are sparse, as shown by the average degree and density measure, suggesting that CAs tend to interact with

only a few other CAs.

1e+00
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Fig. 3. Degree distribution of the CA (X) and Protocol (e) networks are shown in the plot as cumulative distribution function (CCDF).
The estimated parameters 0= (I;,m-n, &) are respectively éCA = (93,1.69) and ép = (25,1.83). In both networks, high-degree nodes
are associated to DEX or lending protocols. For the CA network, they are routing contracts or factory contracts that deploy other
contracts. Nodes with high degree are likely to contain core functionalities and thus to play a relevant role in compositions.
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Table 3. Likelihood ratio and p-value. None of the reported heavy-tailed distributions is favored over the power law.

DeFi CA Network DeFi Protocol Network
Exponential R: 1.322, p-val: 0.186 R: 4.753, p-val: 0.000
Lognormal R: -0.406, p-val: 0.685 R:0.191, p-val: 0.848
Weibull R: 1.122, p-val: 0.262 R: 2.742, p-val: 0.006

4.1 Degree distribution

Looking at the total-value-locked at DeFi Pulse, we can observe that some DeFi protocols and their contracts play a
major role. This observation suggests that they might implement core functionality, which other protocols in DeFi
compositions can in turn utilize. Under this assumption, preferential attachment [3, 33] is a plausible generative
mechanism for both networks. More generally, networks whose degree distribution follows a power law, i.e., the
fraction of vertices with degree k is given by P(k) ~ k™% for values of k > kpmin, are often associated to such generative
mechanism. We thus estimate the parameters 6 = (kmin, @) for our two networks and investigate if the power law
distribution is a good fit.

We rely on the methodology introduced by Clauset et al. [9] and by Broido et al. [6]: evidence of scale-free properties
exist either when no alternative heavy-tailed distribution is relatively better than the power law or when the power
law is a plausible model for the distribution. In the former case, the network exhibits Super-Weak scale-free structure.
In the latter, evidence of scale-free properties is said to be Weak if the tail of the distribution contains at least 50
nodes, and Strong if also 2 < & < 3 holds. We start by estimating the parameters 0 = (kmin, &) by minimizing the
Kolmogorov-Smirnov distance between empirical and fitted data for Kmin, and exploit it to estimate & through the
method of maximum likelihood estimation [9]. We then conduct a goodness-of-fit test via a bootstrapping procedure
(N =5,000). The resulting p-value indicates if the power law is a plausible fit (p > 0.1) for the empirical data or not.
Finally, we conduct a log-likelihood ratio (R) test to compare the power law fit against other heavy-tailed distributions
(i.e., the Exponential, the Lognormal, and the Weibull). A positive value indicates that the power law distribution is
favored over the alternative, and the statistical significance is supported by a p-value that indicates if the hypothesis
R =0 is rejected (p < 0.1) or not (p > 0.1).

Figure 3 shows the power law fit for both networks and their estimated kmin and &. Coherently with other studies
on the interaction networks from Ethereum blockchain data [24], « lies around 1.7 and 1.8, thus being slightly smaller
than the average values usually found for power law distributions. The hypothesis that a power law distribution is
a good fit is not plausible for both networks because p-values are 0.020 and 0.035 for the CA and Protocol networks,
respectively. Table 3 reports the comparisons with other heavy-tailed distributions and shows that the power law is not
significantly favored over the Lognormal distribution for both networks, while it is a better fit than the Weibull and the
Exponential for the Protocol network. In summary, according to the classification proposed in Broido et al. [6], both
networks have Super-Weak scale-free properties. Table 4 inspects the tails of the distributions and reports the top 15
CAs sorted by highest degree: most of the CAs are associated with a few DEX and lending protocols (Iinch, UniSwap,
0x, Instadapp, Maker). We can hypothesize that they are part of DeFi compositions, which we will explore further in

subsequent sections.
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Table 4. First 15 CAs by highest degree.
Address Label Protocol Degree In degree Out degree
0x00000000000049... CHI Token linch 2,713,153 305,627 2,407,526
0x7a250d5630b4cf. .. UniswapV2Router02 UniSwap 56,007 1711 54,296
0xc02aaa39b223fe... EtherToken-v4 0x 54,469 45,129 9340
0x5c69bee701ef81... UniswapV2Factory UniSwap 46,408 26,576 19,832
0x2971adfa57b20e... Mainnet-Instalndex Instadapp 34,497 18,369 16,128
0x4c8albeb8a8776... Mainnet-InstaList Instadapp 33,551 16,956 16,595
0x5ef30b99863452. .. CDP_MANAGER Maker 15,300 8940 6360
0x35d1b3f3d7966a... MCD_VAT Maker 15,214 15,214 0
0xa26e15c895efcO0. .. PROXY_FACTORY Maker 13,718 1 13,717
0x0000000000b318. .. GST2 Token Unknown 13,447 7644 5803
0x11111112542d85... contractAddress linch 12,371 2073 10,298
0x6b175474e€89094. .. MCD_DAI Maker 12,314 12,314 0
OxdeflcOded9bec?... ExchangeProxy-v4 0x 11,147 1138 10,009
0x939daad09fc4a)9. .. mainnet-v1l-InstaAccount Instadapp 10,876 10,876 0
0xfd3dfb524b2da4... N/A Unknown 10,554 1547 9007

4.2 Centrality measures

The results in the previous section highlight the relevant role of DEXs and lending protocols. Network centrality
measures are another helpful tool to determine which nodes might implement core functionalities. We consider the In
degree centrality, as we are interested in identifying relevant contracts that other protocols may use in DeFi compositions.
To add further insights, we also provide the results for the Katz and PageRank algorithms. Katz centrality accounts for
the importance of a node’s neighbors. It is an extension of the eigenvector centrality that addresses issues arising with
directed networks [28] by adding a constant initial weight to each node. PageRank takes into account the Out degree of
nodes to control for the drawback of the Katz algorithm that peripheric nodes might get too high values if linked to a
very central node. The values of each centrality metric are normalized to the range [0,1].

We find that both networks are dominated by a few nodes with relatively high values (for all centrality measures)
with respect to the other nodes; the In degree values are almost always higher than the Katz ones, which in turn are
often slightly larger than the PageRank centrality values. Table 5 reports the values for the nodes with the highest
centrality in the Protocol (left) and the DeFi CA (right) networks. We show only the first three nodes because the others
have relatively smaller values in comparison. In the Protocol network, the most central nodes are two non-labeled CAs.
When considering the ranking of the nodes in the highest 10 positions for at least one centrality measure, 10 DeFi
protocols appear in the highest positions, and Uniswap, in particular, plays an important role. Such protocols are thus
heavily used by other non-labeled CAs in our dataset. Uniswap, Ox and Maker have higher centrality values with respect
to the other protocols. The DeFi CA network is dominated by the Iinch factory contract mentioned in Section 3.1.2 that
deploys CHI tokens. Two other nodes with relatively high values are the wETH CA related to 0x and another factory
contract associated with Uniswap. Considering again the nodes ranking in the highest 10 positions for at least one
centrality measure, CAs associated to Instadapp and Maker appear repeatedly. Factory deployer contracts play a major
role in the DeFi CA network. Note that, by definition, such contracts have a high Out degree, as their functional role is
to deploy other contracts. Interestingly, the In degree centrality results show thus that they also have a relevant role as
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Table 5. In degree, Katz and PageRank centrality measures the three most central nodes. For the Protocol network (left), the column
Address/Protocol reports the address of non-labeled CAs or the protocol name associated to the node. For the DeFi CA network
(right), the column Protocol_Address reports the protocol associated to the CA and the CA itself.

Protocol network DeFi CA network
Address/Protocol In degree Katz PageRank Protocol_Address In degree Katz PageRank
0x0000000000b318. .. 1 1 1 linch_0x00000... 1 1 1
0Oxcc88a9d330dall... 0.371 0.168 0.111 0x_0xc02aa... 0.148 0.107 0.053
UniSwap 0.313 0.176 0.092 UniSwap_0x5c69b... 0.087 0.064 0.036

recipients of calls by other contracts of the network. In conclusion, these results are consistent with the findings of

Section 4.1 in showing that DEX and lending protocols play a major role and may be involved in compositions.

4.3 Reciprocity and assortativity

Next, we look at two measures that provide information on the relationship between nodes and their neighbors, that is,
reciprocity and assortativity. Reciprocity is the likelihood that nodes are mutually linked. Values range from 0 to 1, the
former meaning that the network is purely unidirectional, the latter indicating that all links are reciprocated. For both
the DeFi CA and the Protocol networks, the values (respectively 0.234 and 0.215) are similar to the one reported in [24],
and we follow their interpretation that the presence of reciprocated links is a potential sign of composability, as it
shows that smart contracts tend to rely often on each other. The lower value obtained for the Protocol network could be
explained by the presence of many non-labeled (non-protocol-specific) CAs. If we further reduce the Protocol network
by removing all non-labeled CAs, obtaining a graph abstraction of 23 nodes, the reciprocity (0.677) is much higher,
indicating that protocols interact with each other more often and in a bidirectional way, a sign that compositions exist.
Assortativity is a metric that indicates whether nodes with similar degrees tend to interact with each other (1 > p > 0),
or if nodes with high degrees interact more with low degree nodes (0 > p > —1). Consistently with previous results on
the Ethereum transaction network, both networks are disassortative (-0.473 for the DeFi CA network and -0.262 for the
Protocol network), indicating heterogeneity and a sign that CAs with high degree are leveraged by many other CAs
with a less relevant role in the ecosystem. As shown above, such nodes are often associated with DEX and lending

protocols.

4.4 Components

Reciprocity shows that protocols interact bidirectionally with accounts related to other protocols. We thus look at
metrics providing further insights on how the (code accounts of) different protocols fall into distinct disconnected
components. We distinguish between weakly connected components, in which all the nodes are connected by a path
independently of the directions of the edges, and strongly connected, which considers the edge direction.

For the Protocol network, we find that the largest weakly connected component is equal to the entire network, while
for the CA network, only 34 nodes are outside of the largest component. The remaining nodes fall into 16 components,
with a few nodes each. Table 6 lists the three largest strongly connected components. By comparing the number of
edges and nodes, we notice that the second-largest component of both the Protocol and the CA network is denser than
the other larger components. Additionally, in Figure 4 we illustrate how the CAs belonging to different protocols map
to the ten largest strongly connected components of the CA network. Interestingly, the second-largest component
also encompasses the vast majority of protocol interactions. While the largest component is entirely composed of CAs
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Fig. 4. Heatmap showing how the addresses associated to different protocols fall into the ten largest strongly connected components.
The largest component is uniquely composed of 305,581 Tinch addresses, while the second collects the vast majority of protocols.
Smaller components identify addresses of protocols that do not interact outside of the protocol itself.

Table 6. Description of the three largest strongly connected components. For both networks the pattern is fragmented, but interestingly
the second largest strongly connected components are remarkably more interconnected, indicating that nodes in these components
interact with many other nodes, a prerequisite for composition.

Largest 2nd largest 3rd largest
# Comp. Nodes Edges Nodes Edges Nodes Edges
Contract 2,155,707 305,581 611,160 69,116 370,833 5622 11,242
Protocol 33,832 5622 11,242 3948 14,264 36 71

associated with the Iinch protocol, in the second-largest component, we find addresses of all the analyzed protocols
except for RenVM, which is not present in any of the reported large components. We also find that all the protocols
fall into the second-largest strongly connected component regarding the Protocol network. This analysis shows that
interactions among protocols primarily occur in a single, large component that is more interconnected than average.
Notably, such interactions might indicate the existence of compositions due to the overlapping transaction structure of

multiple protocols.

4.5 Community Detection

One could naively assume that CAs associated with specific DeFi protocols form communities in the Code Account
network. However, the previous results suggest that the network topology reflects DeFi compositions at the level of the
community structure. We thus measure how effectively different community detection algorithms detect protocols in
the DeFi CA network.

We follow the approach of Yang et al. [51], who provide guidelines for selecting community detection algorithms
depending on the size of the network. We analyze the weakest largest component in its unweighted and undirected
version with non-overlapping communities using four different algorithms: multilevel or Louvain [5], label propaga-

tion [34], leading eigenvector [29], and Leiden [42]. Using the labeled addresses in our ground truth dataset, we can
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Table 7. Performance metrics for the community detection algorithms. Low F1 Scores indicate either that the algorithms poorly
identify communities, or that the network topology reflects a more complex organization at the mesoscopic level.

Algorithms Communities Precision Recall F1 Score NMI ¢ /P*
Louvain 14 0.3896 0.7181 0.2917 0.9241 0.6087
Leiden 10 0.3021 0.8589 0.2879 0.9620 0.4348
Label prop. 53 0.7107 0.6009 0.4892 0.9404 2.3043
Eigenvector 4 0.1696 0.9070 0.1776 0.9495 0.1739

verify to what extent C, the set of communities identified by partitioning algorithms, correspond to P*, the set of ground
truth communities defined by the individual protocols. We quantify their performance through the normalized mutual
information (NMI), a benchmark measure in the literature [11, 23] that quantifies the similarity between the ground
truth communities and the identified communities. In addition, we provide two additional measures: the ratio ¢ /P* for
the accuracy of the number of identified communities and the F1 score. We compute the latter similarly to [50]: first,
for each protocol P; € P* we identify the detected community C; € C that maximizes the F1 score. Then, we report
average precision, recall, and F1 scores over all communities P; € P*. Note that we compute the above metrics only
on the labeled CAs. The second column of Table 7 reports the total number of communities that include labeled CAs.
The NMI is high for all the protocols, indicating that overall the algorithms correctly partition the network: indeed, all
algorithms cluster together the CAs created by the Iinch deployer contract, and Iinch is by far the largest ground truth
community in terms of labeled accounts. On the other hand, the low F1 scores (0.18-0.49) result from a small set of
misclassified ground truth communities (e.g., Compound, DyDx, Fei). Upon closer inspection, we noticed that some
protocols map entirely into a few communities dominated by larger protocols (such as UniSwap or Maker), negatively
impacting precision, while others are split into different communities, affecting recall. Iinch itself has a non-marginal
number of addresses that map into other communities.

In summary, we see that algorithms work well, with NMI scores above 0.92. However, when considering the
imbalance in our dataset (precision, recall), we find that known community detection algorithms cannot effectively
identify protocols as distinct communities, but rather indicate protocol composition patterns. The identified community

structure reflects a different organization in which protocols are entangled.

5 MEASURING DEFI COMPOSITIONS

After analyzing the macroscopic network perspective, we now address the microscopic trace level, where we identify
and extract building blocks, i.e. recurring patterns of internal traces induced by protocol-specific CAs that are found as
subpatterns within different transactions. The building block detection can help better understand DeFi compositions
and identify a variety of risks. We consider a detailed risk analysis to be future work, but can motivate some sources of
risk: for example, if security vulnerabilities are identified in underlying building blocks, they can propagate to higher
levels and pose a risk to other DeFi protocols. Atzei et al. [1] analyze the security vulnerabilities of Ethereum code
accounts and attacks that exploit them. Legal issues may arise, including licensing issues, thereby limiting usability in
other protocols. This phenomenon also exists in traditional software!>. Finally, the technical evolution of a blockchain
can also have an impact on the efficiency or security of an existing building block, and here too it is important to

identify which protocols are affected.

Bhttps://www.techradar.com/news/this-popular-code-library-is- causing- problems-for-hundreds- of- thousands-of-devs
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Thus, we propose an algorithm to extract the possibly nested structure of DeFi protocol calls, which may also be
used by other DeFi protocols. In contrast to recent works, that have discovered and exposed DeFi compositions, we
provide a systematic, automated mechanism to explore them by using building block extraction. We then assess the
most frequent building blocks our algorithm identifies and illustrate possible DeFi compositions and show how the DEX
aggregator Iinch and the Instadapp protocols use multiple such building blocks of other protocols. Further, we flatten
the nested structure of building blocks and study the interaction of DEX and lending services. Finally, we present in a

case study the dependencies of DeFi protocol on stablecoins, by using our extracted building block.

5.1 Building Block Extraction Algorithm

In order to detect building blocks, we treat individual transactions as trees of execution traces, that is, as an abstraction
where the external and all the internal transactions are represented as an edge to a new node (thus, the same CA
appears multiple times if executed more than once). We break the trees into subtrees, starting from the tree’s leaves,
and identify a building block whenever we encounter a node that is part of a protocol. If multiple protocol nodes exist
in a tree, the building blocks can be composed of one another. To obtain the nested structure, we create a hash of each
building block and use those hashes to chain nested tree structures. Figure 5 illustrates the process from a high-level
perspective. Subfigure 5a represents the input, which corresponds to the original transaction trace graph which we’ve
also shown in the introductory Figure 1. We aim to identify building blocks that execute the same logic despite being
different instances involving different addresses (i.e., a swap with different tokens). We preprocess and generalize the
execution trace trees as follows:

Preprocessing: In contrast to a graph, like in Figure 5a, an execution tree can have the same node appearing multiple
times as a leaf node, effectively having no cycles. Each edge has a trace ID, determining the order of the calls. If a contract
address appears in a trace that has been deployed by a factory, we rename it to $protocol-DEPLOYED. Furthermore, we
rename all contract addresses as ASSET, which fulfill the criteria that their smart contract code contains the standard

ERC20 token method signatures, and if within the trace, the token contract is called with one such method. The result of

(SushiSwap)

(a) Original transaction trace graph of the (b) Conversion to execution tree, renaming (c) Identification of general building blocks
composition as shown in Figure 1. factory deployed contracts and assets. from protocol nodes with subtraces.

Fig. 5. A high-level illustration of the building block extraction algorithm. Subfigure 5a represents the input composition. This graph
is then converted into an execution tree as shown in Subfigure 5b, such that each node can only have one incoming edge, requiring
the duplication of nodes. In addition, the underlying assets (tokens) and factory deployed contracts are renamed. In this example, the
trading pair contracts are factory deployed (FD). This allows for the identification of generalized building blocks, as each trading
pair only differentiates itself by the specific assets it is dealing with. The result of the building block extraction is then shown in
Subfigure 5c, and is the result of a bottom-up processing of the tree, selecting subtrees of known protocol nodes. See Algorithm 1 for
more details.
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these preprocessing steps is shown in Figure 5b. This preprocessing assumes that factory deployed contracts and ERC20
token contracts provide similar functionality. This allows us to generalize the traces, as many similar interactions with

various standardized tokens become identical.

Algorithm 1: Building Block Extraction

Inputs :(1) Directed, attributed transaction trace tree G(V, E, t, m) with functions ¢ : E — N assigning a unique
trace ID, and m : E — N assigning a method ID on the edges of the tree,
(2) protocol vertices Vp

Outputs:Lists of building blocks Lg, and hashes Lg

1 Lg— (); // Init. list of building blocks
2 Lg — () // Init. list of building block hashes
3 Le « (uv)|Yuo € E : v € Vp; // Edges to protocol nodes

// For each edge to a protocol, get subtree
4 Lg « (E;)| edges reachable from e; for each e; € L¢;
5 LZ «— (G[E;]) | VE; € Lg; // edge induced subtrees
6 Lg — ﬁlter(Lp , by=tree-depth, minimum=2);
7 Lg — sort(I2, by=tree-depth, how=ascending);

8 for Gs(Vs,Es, t,m) € L‘g do // for each subtree
9 // Compute building block hash with V{, Dg, Ms

10 Eg « sort(Es, by=t(Es), how=ascending); // Sort edges
1 Vs & (v1,..,0n) = 0|VYuv € E¢ : 0 € Vs; // Vert. list
12 Ds « degour (v)|Yo € V{; // Outdegree list
5 | Ms e m(E}); // Method ID list
14 hs « sha256hash(stringify(V/, Ds, Ms));

15 Bs « G[V{]; // B. block as vertex induced subtree
16 replace(what=Gg, in=G, with=hg);

17 Lg « Lg || Bs; // Append building block
1 | Lt — Ll hg; // Append building block hash
19 end

20 return Lp, Lg

Algorithm 1 takes as input a transaction trace tree G(E, V, t, m) with two edge attributes: the trace ID ¢, indicating
the order of execution, and m, indicating the method ID of the executed call. The second input is a list of seed protocol
nodes, such as those described in Section 3.1.2. The algorithm outputs a list of building blocks and hashes of such
building blocks. We first setup the output variables in lines 1-2. We then find edges to the protocol nodes in line 3 and
extract all further reachable edges of these to obtain edge-induced subtrees in lines 4-5. We filter them in line 6 to
include only those with a minimum depth of 2, such that the protocol node has to make further calls. In line 7, we sort
the list of subtrees ascendingly based on their depth. This means small trees are at the beginning of the list, and large
trees that may contain these smaller trees are at the end. For each subtree (line 8), we compute a hash in lines 9-14,
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Fig. 6. The 10 most frequently observed building blocks by called root method, root protocol and count. Nodes marked with FD are
generalized factory deployed contracts and those marked with A are ERC20 assets. The majority of these building blocks originate
from UniSwap. Note that block 1 of UniSwap is equivalent to number 5 of SushiSwap. This makes sense, as SushiSwap is a fork of
UniSwap. Number 1 is contained in building blocks 2, and 4 - illustrating an internal composition within the same protocol. Building
block 3 represents the withdrawal of Wrapped Ether (WETH) and is associated to the protocol 0x. Also note that several root methods
are identical, yet can lead to different types of building blocks.

highlighted in gray, akin to a tree kernel. To compute the hash, we first sort the subtree’s edges by order of execution in
line 10, and then extract the target vertices of each edge in line 11, essentially excluding the original calling node, which
could be different in each transaction. For each of those vertices, we compute the outdegree (line 12), and also determine
the method ID for each edge (line 13). The hash is then computed from the three aforementioned properties in line 14.
Using the target vertices, we retrieve the building block from the original tree (line 15), which may contain leaf nodes
of building block hashes as replacing subtrees in line 16 can lead to nested building blocks. Finally, we append building
block and hash to their lists in lines 17-18. Once all subtrees are processed, the lists are returned in line 20.

An example of the algorithm’s result can be seen in Figure 5c, showing three building blocks, one each from SushiSwap,

UniSwap and Iinch. Note that the building block of linch contains the other two building blocks.

5.2 Building Block Analysis

We execute the algorithm on all transactions in our dataset, together with the set of DeFi protocols in our labeled
extended seed set (cf. Section 3). We can then count the retrieved building blocks by their hashes, understand their
composition, and visualize them. Figure 6 illustrates the top 10 most frequently observed building blocks, of which
eight belong to UniSwap. The most frequent building block is a UniSwap swap, with more than 21 million occurrences.
As UniSwap is one of the most popular DeFi protocols, and token swaps are its main functionality, this result shows
that the building block extraction is meaningful. We further observe that the swap building block is reoccurring and
contained in other patterns that appear frequently. Another relevant block is related to 0x’s Wrapped Ether (WETH),
which in our context is not classified as an asset due to its’ use of withdrawal, a non ERC20 function. In the following,

we will provide more insights into the nested structure from different perspectives and discuss their interpretations.
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Fig. 7. lllustrating the composition space of Aave as a network tree. Each node represents a building block, each link a possible nested
building block, extracted from all transactions to Aave. We observe for this protocol a maximum depth of seven nested DeFi building
block levels.

5.2.1 Protocol Building Block Composition. Starting from the execution tree structure of each trace, the algorithm
identifies subtrees. Those building blocks obtained from Algorithm 1 can contain leaves with hashes that point to
other building blocks, leading to a nested structure that still preserves the primary tree structure of the traces. But a
single transaction only represents a small snapshot of the entire tree of possible compositions. For a comprehensive
image of the DeFi protocols composition space, we have to consider multiple transactions. To observe the space of all
possible compositions, we construct a network of overlapping building block trees for all transaction of the same initial
(external) DeFi protocol. For an illustrative example, we used the extracted building block structures of all transaction to
Aave. The network still conserves the tree structure, where each node represents a building block and each link a nested
composition, observed in the transactions. Figure 7 shows the Aave network and illustrates its multiple nested levels.
Starting from the top with external transactions from EOAs to Aave, a variety of paths and compositions can be seen,
presenting the space of all possible compositions, observed from existing transaction data. Nevertheless, this network
illustration doesn’t provide a comprehensive picture of the volume (i.e. number of appearances) of those compositions
and the number of branches, when a building block calls multiple sub-blocks.

We can inspect for each building block the set of contained protocols and the volume of their appearances: the
treemaps in Figure 8 illustrate the shares of protocols appearing in the building block structure of a specific nested level.

In Figure 8a we observe the volume of building block calls and associated protocols in the first level for the protocols
linch. The largest fraction are external transactions that do not contain any other building blocks; this is captured by
the box labeled as NONE. All other boxes show instead the share of transactions in which one or multiple DeFi service
building blocks are nested. We group them using different colors based on the number of unique, distinct protocols that
are called in the subsequent building blocks of this level. For instance, yellow boxes indicate the fraction of transactions

in which the appearing nested building blocks in the first level are associated to one single DeFi protocol, while blue
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Fig. 8. Inspecting the potentially nested building blocks used by the first level of 7inch (left) and the fourth level of Instadapp (right).
The size of each box represents the share of building blocks assigned to one or more unique protocols. For Tinch transactions, at the
first nested level, about a third of the used building blocks are of one (chiefly other) protocol (yellow boxes). An even bigger fraction
can be observed for Instadapp but in the fourth nested building block level.

boxes represent the fraction in which the building blocks in the first level are associated to two different protocols. We
further observe portions of transactions that contain building blocks assigned to more than two protocols within the
first nested level.

Moreover, the treemap in Figure 8b show branches in a deeper level within Instadapp transactions. In the fourth
level of self-compositions, besides the fraction that does not contain any further block (NONE), an even bigger share of
building blocks appear that are associated to one single DeFi protocol. We also inspect again the existence of building
blocks associated to two and more protocols.

These two illustrations in Figure 8 give insights to our systematical investigation on compositions, and show that
looking only to selected compositions or single nested levels of DeFi compositions would return a partial picture:
interactions among protocols can be iteratively nested one within each other and can take place in deeply nested levels.

Therefore a further investigation to disentangle and flatten the nested structure is needed.

5.2.2  Flattening Composition Hierarchies. We then want to investigate to what extent the DeFi protocols leverage
other protocols to provide their services. That means, we want to identify a mapping of top-level protocols to any of
the building blocks they make use of, whether deeply nested or not. To get an overall picture of the DeFi compositions,
we flatten the nested building block structures.

In each transaction, we follow the cascade of nested building blocks and create a mapping from the contained protocol
of building blocks to the original DeFi protocol that the external transaction was sent to (the root protocol). If mappings
appear multiple times over different transactions, we aggregate them. For each root protocol, we can then compute
the frequency of associated protocols to contain building blocks over all transactions. The result is a measure that
indicates, for a given root protocol, the probability that a certain building block of a DeFi protocol appears anywhere in
the (nested) building block structure. In Figure 9 we show the building block appearances of lending, DEX, derivatives
and asset protocols with a heat map. Each row corresponds to the external calls to a specific protocol, and the row
entries indicate the frequencies of the occurrence of a protocol’s building blocks. The relative share measurement is the
fraction of internal building blocks based on the number of external transactions. We notice that the NONE category
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Fig. 9. Appearances of DeFi service building blocks across protocols. The numbers indicate the percentage of transactions in which a
building block of a certain protocol is contained. The use of multiple DeFi services can be observed for DeFi aggregation protocols,
like Instadapp, linch and 0Ox.

indicates the share of transactions for which no building blocks have been found. Most protocol interactions exist
within each protocol, visible by the highlighted diagonal elements. This pattern is especially remarkable for derivative
protocols. Consider, e.g., dYdX: all external transactions directed to it contain at least one dYdX building block. However,
DeFi aggregation protocols such as Instadapp, linch, and 0x in particular show extensive use of other DeFi services
and thus frequent occurrences of DeFi compositions. This indicates Algorithm 1 works as intended, as, by definition,
aggregation protocols must call other protocols. The frequent appearance of the 0x protocol can be attributed to the
popular Wrapped Ether token and its withdraw pattern, already observed and shown in Figure 6. Further, we note that
second to 0x, UniSwap building blocks appear in most transactions to the protocols shown in Figure 9. Derivatives
protocols have instead little or no further interactions with other protocols, as shown in the row associated with

derivatives in the matrix of heat maps, as well as the assets protocols that do not interact heavily with other protocols.

5.3 Case Study: A hypothetical run on the Tether

In May 2022, we witnessed the collapse of the Terra ecosystem and its stablecoin TerraUSD (UST), which maintained its
peg to the US Dollar through an arbitrage mechanism with the token LUNA. This triggered a so-called stablecoin-run
and destroyed over 30B USD of value within a single week. Motivated by this recent demonstration of systemic risk
associated with stablecoins, we apply our building block extraction and analysis methods to measure how a hypothetical
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Fig. 10. Dependencies of building blocks on the USDT crypto asset for each DeFi protocol. Distinguished between direct included
asset or indirect through other nested contained blocks.

run on the stablecoin Tether (USDT)', which is the most widely adopted stablecoin in Ethereum, would affect known
DeFi protocols based on building block dependencies. We distinguish between direct dependencies, where USDT is an
explicit part of a building block, and indirect dependencies, where USDT appears somewhere in its’ nested building
blocks. Starting with the most frequent building blocks (see Figure 6), we analyzed the occurrence of USDT in the
regularly used sub-patterns of transactions. We detected USDT in 10.6% of ‘swap’ building blocks from UniSwap (1) and
16.2% from SushiSwap (5). For the ‘swapExactTokensForTokens’ building block from UniSwap (2), we find an even higher
direct occurrence of 22.7% and an indirect dependency of further 21.2% with the nested block structure, containing the
before mentioned ‘swap’ building blocks from UniSwap (1).

In order to obtain a broader picture of the dependencies in the DeFi ecosystem, we also analyzed, for each protocol,
the fraction of building blocks containing the USDT asset directly or indirectly in more deeply nested blocks. Our results,
which are summarized in Figure 10, show that most protocols have rather low dependencies (< 10%). However, 14.2% of
Curvefinance building blocks include the USDT asset directly and also the two DEX protocols UniSwap and SushiSwap
strongly depend on that asset. This is in line with our previous finding that ‘swap’ is the most frequent building block.
We further find that Compound and Instadapp building blocks have in comparison high indirect dependencies on the
USDT asset. These dependencies indicate how a shock in the DeFi ecosystem, such as a run on a stablecoin, could affect
DeFi protocols, directly and indirectly, through their services. Since USDT has become a multi-chain asset, which is
also traded and used on other blockchains (e.g., Binance Smart Chain, Avalanche), such shocks could also spread across
chains and lead to systemic failures. However, we consider this analysis a first step towards a deeper investigation of

systemic risk and keep a deeper investigation for future work.

4 0xd AC17F958D2ee523a2206206994597C13D831ecT
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6 DISCUSSION

In this section, we discuss some of the insights from our analyses, as well as the limitations of our work.

6.1 Insights

Cryptoassets are not a niche phenomenon anymore. They reached an overall market capitalization of more than 2T
USD (Nov. 2021) and are increasingly interconnected with the traditional financial systems. With DeFi, we now see the
introduction of leveraged financial products and assets that are backed with some poorly understood virtual securities.
Our results provide initial insights into the motivating questions mentioned in the introduction.

Concerning ecosystem interoperability, we found that compositions between DEX protocols are particularly frequent
in our dataset (c.f. Figure 9). From this, we can conclude that these protocols should ideally be deployed on the same DLT
platform as long as single-transaction cross-chain compositions are not possible. At the same time, however, we also
found that derivative protocols in particular still contain relatively few compositions. This suggests that, for example,
a protocol-type specific scaling solution could be useful. For example, a sidechain for derivative protocols. Fewer
compositions would still be possible, but not with a significant negative impact as when separating DEX protocols.

As far as integration with web technologies is concerned, the versatile use of building blocks shows that elementary
constructs are already reused and integrated by various applications, without this necessarily being transparent to the
users. The view is further reinforced when considering that various assets are already integrated into web technologies,
but their simultaneous inclusion in financial instruments and compositions is barely obvious. An example of this is the
BAT token, which is integrated into the Brave browser but is also used in various DeFi protocols.

Finally, turning to risks through complexity, we recall that the financial crisis in 2008 has shown that a lack of
understanding and lack of regulation can have unforeseeable risks for the financial markets and our society as a
whole. Whilst composability unleashes unexplored possibilities, it may also lead to unforeseen risks. Indeed, despite
DeFi protocols are aware of and often even facilitating the use of their own CAs in composition with those of other
protocols, these interconnected novel financial services lack a form of coordination on the resulting compositions. Thus,
unintended forms of interaction across protocols could take place, exposing users to risk, even more so when calls are
iteratively nested and several protocols are indirectly involved. If the DeFi ecosystem evolves at the current pace and
integrates closely with the traditional financial sector, associated systemic risks must be understood and mitigated.
Our work shows how DeFi protocols can be decomposed, and the share of protocol interactions can be visualized (c.f.
Figure 8). With our case study we simulate a hypothetical run on Tether and show how our method can provide first
insights how DeFi protocols and their services could be affected, also through cascading effects from other protocols.

That shows the potential and possibilities for further studies to evaluate systemic risk.

6.2 Limitations

We acknowledge and point out some limitations of our work. First, our results naturally reflect only the compositions of
the protocols and labeled addresses contained in our ground truth dataset. Since the DeFi landscape is evolving rapidly,
extending our seed data and the observation period, as well as investigating the temporal evolution of the DeFi protocols,
is an obvious next step. One can then re-run our generally applicable analytics procedures. We emphasize however
that, while a longitudinal analysis of DeFi usage in a longer time frame would be of interest, our main contribution
regards the devised methodology to uncover compositions. The time frame and extent of the DeFi protocol activity we
investigated are sufficiently large for this (static) analysis. Second, as we focused on composability, we didn’t investigate
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some features of the network topology, such as their small-world properties (e.g., clustering coefficients and path
lengths); we studied recurrent patterns by decomposing individual transactions as nested building blocks, rather than
studying triadic (or higher order) motifs and core decomposition methods; Topological Data Analysis (TDA) has been
exploited in the literature mostly in predictive models to identify anomalous patterns, which is beyond the scope of our
work; similarly, temporal aspects are left for future work, as discussed previously. In our network analysis, we currently
neglect edge weights between CAs, which may indicate the strength of composition. Including them could also be
part of future work. Third, our building block extraction algorithm currently yields the building blocks of known DeFi
protocols. We believe that future work should aim at a more systematic evaluation using a curated ground truth of DeFi
compositions. Finally, we point out that currently we mainly focus on single-transaction interactions between CAs.
However, DeFi compositions could also be constructed by EOAs over time using multiple transactions. We do not yet

consider this aspect in our analysis, but we deem it one of the most promising avenues for future work.

7 CONCLUSION

The overall goal of our work is to provide methods and results that contribute to a better understanding of DeFi
protocols, which are a new family of financial products. We manually curated a ground truth set of 23 DeFi protocols,
which can be reused in future research. We constructed network abstractions representing the interactions between
smart contracts (CAs) and DeFi protocols and conducted a topology analysis in the timespan from Jan-2021 to Aug-2021.
The results indicate the existence of compositions, which is further supported by our finding that known community
detection algorithms cannot disentangle DeFi protocols. Therefore, we proposed an algorithm that extracts the building
blocks of DeFi protocols from transactions. We assessed the most frequent blocks and found that swaps play an essential
role. We also analyzed individual DeFi protocols by disentangling their building blocks and flattened the composition
hierarchies of all DeFi protocol transactions in our dataset. We provide a case study, that discovers how the building
blocks depend on the USDT stablecoin. This shows how the proposed method can help identify potential systemic
risk, by measuring to what extent each protocol is affected by propagating shock of a single entity, originated from
vulnerabilities, legal issues or technical advances. Finally, we have discussed the implications and limitations of our
work, providing first insights into questions about interoperability, integration with Web technologies, and systemic
risks that may arise in complex financial systems.

In summary, our work is the first that investigates DeFi compositions across multiple protocols, both from a network
perspective and at the level of individual transactions. We believe that our methods make an essential contribution to
understanding the bigger picture and the basic building blocks of individual DeFi protocols and their relationships

across protocols.
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