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Abstract 
Attempts to find central “influencers,” “opinion leaders,” “hubs,” “optimal seeds,” or 
other important people who can hasten or slow diffusion or social contagion has 
long been a major research question in network science. We demonstrate that 
opinion leadership occurs only under conventional but implausible scope 
conditions. We demonstrate that a highly central node is a more effective seed for 
diffusion than a random node if nodes can only learn via the network. However, 
actors are also subject to external influences such as mass media and advertising. 
We find that diffusion is noticeably faster when it begins with a high centrality node, 
but that this advantage only occurs in the region of parameter space where external 
influence is constrained to zero and collapses catastrophically even at minimal 
levels of external influence. Importantly, nearly all prior agent-based research on 
choosing a seed or seeds implicitly occurs in the network influence only region of 
parameter space. We demonstrate this effect using preferential attachment, small 
world, and several empirical networks. These networks vary in how large the 
baseline opinion leadership effect is, but in all of them it collapses with the 
introduction of external influence. This implies that in marketing and public health 
that advertising broadly may be underrated as a strategy for promoting network-
based diffusion. 
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Among the central theoretical and practical attractions of social network 
analysis is the promise that key nodes, known as “opinion leaders” or “influentials,” 
hold structural power to change the ideas and behaviors of entire social systems(1–
3). An extensive literature in sociology, physics, and network science centers on how 
best to measure network centrality. From the beginning, much of this literature 
takes as its motivation identifying a node or nodes that are optimal seeds for 
diffusion(4–8).* For instance, a seminal study of how doctors prescribe new drugs 
ascribed this behavior to key doctors in the advice network(11). In such applied 
contexts as “viral” marketing and public health outreach, opinion leadership 
suggests the promise that a structurally important node (and, by extension, the 
social network analyst who can identify that node) is the key to controlling the 
spread of a product, health behavior, or other idea or behavior(2, 3, 8, 12–14).  

The influentials literature focuses on network sources of information, but in 
most realistic scenarios people have sources of information that transcend the 
network(15–17). Introducing these non-network sources of information may 
qualitatively change the nature of diffusion, and specifically the role of a highly 
central hub or hubs. In many theories and simulations, agents are constrained to 
only observe information through a social graph, but real people are not so myopic. 
Even if we are most attentive to word-of-mouth from our social ties, we also learn 
about new ideas and behaviors from mass media, advertising, government 
mandates, and even direct observation of events. If it begins raining and everyone 
opens her umbrella, the proximate cause of this behavior is a response to nature 
rather than information spreading through a social network(18). Some diffusion 
models meaningfully incorporate roles for external sources of information(15, 19, 
20), but other models effectively assume an entirely word-of-mouth process even if 
their narrative theory allows for external influence(3).  

The computational experiment we present in this article contributes to a 
large body of social networks literature on influentials and opinion leadership(7, 8), 
but takes as its micro-foundations a diffusion model from marketing that involves 
both network-based diffusion and external influence from sources like 
advertising(15). We conduct a large-scale computer simulation in which we seed 
diffusion with either the most central node or a node chosen at random in various 
empirical and algorithmically-generated networks.† We test the opinion leadership 
hypothesis for various points in parameter space where one axis is the strength of 
network-based diffusion (e.g., “word of mouth”) and the other axis is the strength of 
an external force (e.g., advertising and mass media). We measure the strength of 
opinion leadership for each point in parameter space by how much faster diffusion 
occurs when the initial node is highly central versus chosen at random.  

 
 
* Aside from measuring influence over diffusion, the other two major 

theoretical interpretations of network centrality are status and bargaining power(9, 
10). These theoretical applications have their own associated centrality metrics. 

† Replication code is available at 
https://osf.io/25rav/?view_only=509223b515e64c99a4b277d0bdd376fb 
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The experiment adapts a mixed-influence model outlined by Bass(15, 21–23) 
to test whether the effect of central nodes on diffusion is robust to the presence of 
external influence. In the Bass model, people are exposed to information about the 
innovation from two sources: interpersonal imitation (with a density dependent 
hazard) and external influence (with a constant hazard). Interpersonal influence 
represents the effect of word-of-mouth (or closely analogous processes like local 
network externalities or person-to-person spread)(24, 25). External influence 
represents the effect of advertising, mass media, internet search, or government 
mandates(15, 17, 23, 26). Traditionally, the Bass model is represented as a 
differential equation that measures diffusion in aggregate over time. The aggregate 
approach has the advantage of simplicity but makes it impossible to integrate 
network structure. We therefore adapt the Bass model to an agent-based model 
which allows for potential emergent properties of unequal influence between nodes 
based on their structural positions.  

The Bass model defines the rate of new adoptions in aggregate as 
𝛥𝑁𝑡 = (𝑎 + 𝑏𝑁𝑡)  ∗  (𝑁𝑚𝑎𝑥  −  𝑁𝑡) 

where 𝑁𝑡 is the cumulative number of people who have adopted as of time t, a is the 
coefficient of external influence, b is the coefficient of interpersonal influence, and 
𝑁𝑚𝑎𝑥 is the asymptotic number of people who will ever adopt. To include the effect 
of network structure on individual adoption, we adapt this equation to an agent-
based model. In the agent-based model, for each agent i at time t:  

 
𝑝(𝑖 𝑎𝑑𝑜𝑝𝑡𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 | 𝑖 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑎𝑑𝑜𝑝𝑡𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡)

= 𝛼 +  𝛽(𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖′𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑤ℎ𝑜 𝑎𝑑𝑜𝑝𝑡𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡𝑖𝑚𝑒 𝑡) 
  
α is a constant hazard of adoption, representing the weight given to 

advertising and other external influences on diffusion, and β is the weight given to 
social or network influence.‡ To ensure that α and β are on comparable scales, we 
allow them to range between 0 and a maximum value that saturates the network 
with a consistent probability. We identify these maxima with a separate set of 
simulations, which identify the values at which α and β saturate the network in one 
hundred ticks or less in 50% of trials. We refer to these α and β maxima as “LD50,” 
as a metaphor for the standard “lethal dose 50%” metric in toxicology. Full details of 

 
 
‡ More formally stated,  

𝑃(𝑋𝑖 = 𝑡|𝑋𝑖 ≥ 𝑡) = 𝛼 + 𝛽 (
∑ 𝑋𝑗 < 𝑡𝑗∈𝑁(𝑖)

|𝑁(𝑖)|
) 

 
where 𝑋𝑖 is the time when person i adopts, N(i) is the set of neighbors of 

person i, α is a constant hazard of adoption, representing the weight given to 
advertising and other external influences on diffusion, and β is the weight given to 
social or network influence. 
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estimating the LD50 values appear in the supplementary materials.§ To highlight 
changes at the lowest end of parameter space, we explore both dimensions of the 
parameter space on a log scale. In both the aggregate and agent-based Bass models, 
once a person adopts, she cannot abandon the innovation, meaning the number of 
adopters increases monotonically.  

Our experimental setup varies the seed, meaning the initial innovator in the 
simulation. In the simulation, innovations start at one person, the seed, and spread 
outward from that person.** Our control condition seeds the innovation with a 
randomly chosen person in the network. Our treatment condition seeds the 
innovation with the most central person in the network, as measured by 
betweenness. In most networks, betweenness is right-skewed so in our networks 
the most central node is anywhere from six to several hundred standard deviations 
above the mean.†† We test the effects on preferential attachment networks (shown 
in Figure 1) and small world networks generated in igraph(27) as well as the giant 
components of the Democratic National Committee email network (548 nodes and 
2,442 edges), Enron e-mail network (33,696 nodes and 180,811 edges), and a 
network of retweets and mentions on Twitter (532,325 nodes and 694,606 edges). 
We focus on preferential attachment networks in Figures 1 and 2 but show 
robustness of our key finding to all these networks in Figure 3 and the 
supplementary materials.  

FIGURE 1 ABOUT HERE 

 
Figure 2 shows the central tendencies of the cumulative distribution 

functions by random versus highest betweenness seed node given the assumption of 
peak social influence (𝛼 = 0, 𝛽 = LD50).‡‡ Under those conditions, innovations that 

 
 
§ Parameter values are set to the same scale so that a one-unit change in α 

does not have a substantially different meaning than a one-unit change in β. We 
bracket the question of what position in parameter space is most realistic for what 
applications. However, neither the exact choice of maxima nor the exact position in 
parameter space matter for our findings, as the majority of the effect occurs with the 
introduction of any external influence. 

** See the supplementary materials for specifications with multiple seeds 
targeted by keyplayer(5). More seeds results in faster diffusion, but the relative 
advantage of targeting multiple seeds with keyplayer versus an equal number of 
random seeds is an order of magnitude weaker than that of a single targeted seed 
versus a single random seed. However, the advantage of targeting multiple seeds is 
less fragile to the introduction of external influence. 

†† Centrality metrics tend to be correlated in the right-tail, implying that the 
analysis should be robust to the choice of metric. As an example, appendix Fig. S7 
replicates our findings using closeness centrality instead of betweenness. 

‡‡ See Figure S1 in supplementary materials for spaghetti plots of individual 
CDFs. 
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start with the most central person spread to half of the people in the network over 
twice as fast. 

 

FIGURE 2 ABOUT HERE 

 
As Figure 2 indicates, the gap between the conditions is approximately 

widest at time to 50% adoption (CDF = 500, displayed as a red horizontal line), 
making it the metric most favorable to opinion leadership. In addition, time to 50% 
adoption is much less vulnerable to right-censorship than time to saturation. We use 
this metric, average time to 50% adoption, to summarize the full parameter space. 
In the top panel of Figure 3, we demonstrate how diffusion speed on a preferential 
attachment network responds to varying the α and β parameters separately for 
random seeds and seeding at the highest betweenness node. The heat dimension 
shows the ratio of the mean time to 50% saturation for a random seed over that for 
a high centrality seed. (Supplementary materials figure S1 shows how this ratio is 
derived from Figure 2). Seeding with a highly central node has an advantage but 
only when α = 0. This advantage disappears quickly for all points in parameter space 
where α > 0, dropping precipitously at the next interval (α = 0.25% of LD50) and the 
advantage of a highly central seed node almost completely vanishes for points in 
parameter space where α > 3% of LD50.  

FIGURE 3 ABOUT HERE 

 
The heat map in the top panel only illustrates results for preferential 

attachment networks, but in the bottom panel we provide sparklines summarizing 
several networks for the plane of parameter space where 𝛽 = 𝐿𝐷50 (i.e., the 
equivalent of the top row of the heat map). When α = 0, the effect of a highly central 
seed node varies substantially by the type of network, being trivial in a small world, 
but substantial in the three empirical networks. However, the finding from 
preferential attachment networks that the advantage of seeding with the peak 
betweenness node collapses rapidly when α > 0 replicates in all other networks, no 
matter how strong the highly central seed node effect is when 𝛼 = 0. Targeting the 
central node materially speeds adoption only in the region of parameter space 
where there is no external influence (α = 0). In all networks, there is a precipitous 
drop in the effect of highly central seeding as α goes from zero to 0.26% of the LD50 
and the highly central seed effect is essentially absent when α reaches even a few 
percentage points of its LD50 value. The supplementary materials contain full heat 
maps for all networks listed in the Figure 3 sparklines plot. 

These findings indicate that the positive effect of targeting the most central 
node as opinion leader is subject to a highly restrictive scope condition. Previous 
research has shown that opinion leadership requires substantial inequality in 
centrality(28) but many phenomena of interest meet that scope condition. Here we 
show the much more demanding scope condition of the absence of advertising or 
other forms of external influence. When no external influences are present, 
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targeting a highly central person results in diffusion that can spread to half of the 
network faster than if a person were chosen at random, with the advantage being 
trivial for small world networks and an order of magnitude for the email networks. 
However, in the presence of external influences, even extremely weak external 
influences, identifying and seeding with an opinion leader does not lead to 
appreciably faster adoption of an innovation. This suggests that the simulation 
literature on optimal seeding to opinion leaders only applies under restrictive scope 
conditions that likely apply to few empirical scenarios. When diffusion follows the 
network strictly, as in the spread of a sexually transmitted disease(29) or 
clandestine communication with a cell structure, then centrality can have 
appreciable effects. However, the diffusion of a product, behavior, or belief, will 
normally involve some level of external influence and even if that external influence 
is dwarfed by network influence, there should be no effect of the seed node’s 
network position so long as external influence exists at all. 

Adding in even weak advertising effects nullifies the impact of seeding with 
the most central node. Advertising creates a non-zero probability that people can 
adopt without exposure from other adopters, conceptually similar to increasing the 
number of seeds. Our findings thus suggest that advertisers or public health officials 
who are planning a campaign should consider that advertising can also promote 
network-based spread and may do so more efficiently than identifying and 
recruiting a highly central seed node. This implies a return to the early “two step 
flow” model, in which most people adopt based on influence from numerous minor 
opinion leaders of purely local influence, who in turn got information from mass 
media(19, 20).  

There is substantial evidence that ideas and behaviors spread via 
interpersonal influence, but this is neither the same thing as an emergent property 
of critical importance for a highly central node nor a practical upshot that seeding 
with a central node is important under realistic circumstances. While social 
connections remain important for the spread of ideas, products, and behaviors, our 
simulations highlight the importance of the context in which those networks are 
embedded. Our results imply that in studies of diffusion the effect of mass media 
and advertising on the spread of a trend changes the nature of network-based 
diffusion, even if mass media and advertising have a weak role in and of themselves. 
To understand the drivers behind a trend, it is not sufficient to understand how well 
positioned the initial adopter is to spread the trend. We must also understand if 
advertising or other broad forces like mass media, government mandates, or search 
engines seed the trend widely, and thereby render the choice of the initial adopter, 
no matter how central to the network, irrelevant. 
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Figure 1 

 
 

Example of a preferential attachment network generated with the Barabási-Albert 
algorithm(30) with 1000 nodes, one edge per node, and an exponent of one. We 
focus on this network as relatively favorable to opinion leadership but in figure 3 
and the supplementary materials show other networks. The yellow node is the 
highest betweenness node used to test the effect of influentials. 
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Figure 2 

 
Cumulative number of adopters, denoted CDF, in simulations assuming only 
network diffusion (𝛼 = 0, 𝛽 = 𝐿𝐷50) in a preferential attachment network (1000 
nodes, 1 edge/node). The plot shows the confidence interval around the mean of 
both experimental conditions: simulations seeded with the highest betweenness 
node and simulations seeded with a randomly selected node. Seeding with the 
highest betweenness person saturates half the network (indicated by the red 
horizontal line) over twice as fast. 
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Figure 3 

 
 

Ratio of mean time to mid-saturation in simulations targeting a randomly chosen 
node in the network versus targeting the highest betweenness node. The top 
panel (A) shows the full parameter space for randomly generated preferential 
attachment networks (1000 nodes, 1 edge/node). Gray cells represent right 
censored cases. Targeting a highly central person results in adoption that is over 
twice as fast, but only when there is no effect of advertising (𝛼 = 0). The bottom 
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panel (B) shows a summary across several algorithmically generated and 
empirical networks as we assume high levels of network diffusion (𝛽 = 𝑙𝑑50) but 
vary external influence (𝛼) as a percentage of each LD50 value, plotted on a 
logarithmic scale. This is the equivalent to the top row of cells in panel A, but 
substituting a y-axis for the heat dimension and showing more networks. Across 
all these networks, targeting a highly central person results in faster adoption, but 
only when there is no effect of advertising (𝛼 = 0). The impact of highly central 
seeds approaches parity with random seeds at even very low positive levels of 
advertising. 
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Network Hubs Cease to be Influential in 
the Presence of Low Levels of 
Advertising 

Supplementary Materials 
 

Simulation procedure 
Agent based model 

We develop an agent-based model version of the Bass(1) model of adoption. 
Our model takes the following steps.  

 
1. Seed a network with a single initial adopter. 

○ In some trials the seed node is chosen at random and in others the 
seed node is the highest centrality node in the network. 

2. Calculate each person’s probability of adopting at each discrete time interval 

using the following relationship: 𝑃(𝑋𝑖 = 𝑡|𝑋𝑖 ≥ 𝑡) = 𝛼 + 𝛽 (
∑ 𝑋𝑗<𝑡𝑗∈𝑁(𝑖)

|𝑁(𝑖)|
) = 𝛼 + 𝛽𝐴𝑌𝑡, 

where: 
○ 𝛼 and 𝛽 are scalar parameters expressing external influence and 

network influence, respectively. For any given cell in parameter space 
they are fixed. 

○ 𝑌𝑡 is an 𝑛 × 1 binary vector whose elements 𝑦𝑖𝑡 are 1 if 𝑋𝑖 < 𝑡, 
meaning that 𝑖 adopted the innovation before time 𝑡, and 0 otherwise. 

○ 𝐴 is the 𝑛 × 𝑛 row-normalized adjacency matrix of the network, 
whose cells 𝑎𝑖𝑗 are defined:  

𝑎𝑖𝑗 = 𝑧𝑖𝑗/∑𝑧𝑖𝑗

𝑗

 

where 𝑧𝑖𝑗is 1 if i and j are connected and 0 otherwise. 

3. Repeat step 2 until the network achieves the target level of saturation or 
until the maximum number of ticks has been completed. 
 
We repeat this procedure for 1,000 trials for each cell in parameter space. 

For some networks, we expanded this to up to 5,000 trials to minimize right-
censorship. 
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Network used in the experiments 
Preferential attachment networks(2) -- generated networks in R using 

igraph::sample_pa(). The networks vary only by number of nodes and all of them 
have edges/node and power exponent set to one. This results in a tree-like 
structure. To measure key network traits, we generated a thousand networks of 
each type. We report the average of their mean path lengths and the betweenness 
score for the highest betweenness node in each network expressed as a Z-score.  

Number of 
generated 
networks 

Nodes Average mean 
path length 

Peak betweenness 
nodes (Z-score) 

1,000 1,000 8.4 18.7 
1,000 10,000 11.5 58.6 

 
Small world networks(3) -- generated in R using 

igraph::sample_smallworld(). We generated 1,000 examples of each type and varied 
number of nodes and edges/node. For these networks, the table below reports 
average mean path length and peak betweenness as a Z-score. The given parameters 
and measured attributes are summarized below. 

 
Number of 
generated 
networks 

Parameters to generate the networks Measured attributes of 
the networks 

Nodes edges/node rewiring 
probability 

average 
mean path 
length 

Peak 
betweenness 
nodes (Z-
score) 

1,000 10,000 3 2% 12.4 10.8 
1,000 1,000 2 2% 13.3 7.1 
1,000 1,000 3 2% 8.5 6.8 
1,000 1,000 4 2% 6.6 6.5 

 
Empirical networks – We tested three empirical examples of real-world 

communication networks: the DNC e-mail network, the Enron e-mail network, and a 
Twitter network. The Democratic National Committee (DNC) e-mail network is the 
set of Democratic party e-mails posted to Wikileaks in 2016, available online at 
http://konect.uni-koblenz.de/networks/dnc-temporalGraph. The Enron e-mail 
network consists of Enron e-mails collected by the Federal Energy Regulatory 
Commission in 2002, available online at http://snap.stanford.edu/data/email-
Enron.html. The Twitter network contains users who mention or retweet others 
during January 23 - February 8, 2011 and is available online at http://www-
levich.engr.ccny.cuny.edu/~min/retweetformat.txt.(4) We forced DNC and Twitter 
to be undirected but Enron was already undirected. For each network we eliminated 
redundant edges and isolated the giant component. This last step biases the analysis 
in favor of the hypothesis that hubs are influential. For the two networks that were 
originally directed, DNC and Twitter, we kept only nodes that both sent and received 
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to identify the active core of the network before making them undirected. The 
attributes of these networks are summarized in the table.  

 
Network Nodes Edges Mean path 

length 

Peak betweenness 

node (Z-score) 

DNC 548 2,442 2.9 17.2 

Enron 33,696 180,811 4.0 70.7 

Twitter 532,325 694,606 9.08 391.1 

 

 

Determining parameter range 
The 𝛼 and 𝛽 parameters are not inherently on the same scale. Indeed, any 

given value of 𝛼 implies much more rapid diffusion than the same value for 𝛽. We 
use a simulation approach to rescale the parameters to be on the same scale.  Under 
our approach, we allow parameters to range from 0 to the parameter value at which 
50% of trials for a given network will be completely saturated by 100 ticks.  We 
refer to this parameter value as the LD50, following terminology from toxicology for 
the median lethal dose, meaning the dose at which 50% of the test population 
perished.   

Note that by setting comparable maxima for 𝛼 and 𝛽 we are not implying 
where the most realistic position is in parameter space and indeed this probably 
varies by empirical scenario.(5) For awareness, or learning about ideas or products, 
diffusion tends to be characterized by α. However, adoption, or actually embracing 
new ideas or purchasing new products, tends to skews towards β, especially when 
the new idea or behavior has low legitimacy or would be onerous to implement. 
There are exceptions though and adoption can skew towards α if there is aggressive 
promotion and the product being promoted is a good fit with the expectations of its 
target market.(6, 7) 

We estimated these LD50 values using a separate set of simulations.  We 
repeatedly run simulated diffusion processes on the networks that we use to 
determine the appropriate LD50 values through trial and error. We calculate LD50 
values separately for each network formation heuristic or empirical network. For 
instance, preferential attachment with a thousand nodes has one set of LD50s, 
preferential attachment with ten thousand nodes another, and the Enron network a 
third.  

In our main set of simulations, we use LD50 values to define the maximum 
for the range of each dimension of parameter space and we explore parameter space 
by taking 21 logarithmically spaced steps from 0 to the LD50 value for both 𝛼 and 𝛽.  
We compute the logarithmically spaced percentage steps with the following R code: 

 
expm1(seq(from = 0, to = log1p(100), length.out = 21)) / 100 

 
and then multiply this vector by the LD50 value for each parameter of each network. 
This results in the following sequence: 
0.0%, 0.3%, 0.6%, 1.0%, 1.5%, 2.2%, 3.0%, 4.0%, 5.3%, 7.0%, 9.0%, 

11.7%, 14.9%, 19.1%, 24.3%, 30.9%, 39.1%, 49.5%, 62.7%, 79.2%, 100.0% 
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For example, DNC has an LD50 of 6.52 for 𝛼, which results in the following intervals 
(rounded to two digits for clarity): 
0.00, 0.02, 0.04, 0.07, 0.10, 0.14, 0.20, 0.26, 0.35, 0.46, 0.59, 0.76, 

0.97, 1.24, 1.58, 2.01, 2.55, 3.23, 4.09, 5.16, 6.52 

 
Where 0.02 = 6.52 * 0.003, 0.04 = 6.52 * 0.006, etc. 
 
DNC’s LD50 of 27.98 for 𝛽 results in: 
0.00, 0.07  0.16  0.28  0.42  0.61, 0.84, 1.13, 1.49, 1.95, 2.53, 3.26, 

4.18, 5.34, 6.80, 8.63, 10.95, 13.86, 17.53, 22.16, 27.98 

 

R code for this process would be as follows: 
 

alpha_ld50 <- 6.52 

beta_ld50 <- 27.98 

log_pcts <- expm1(seq(from = 0, to = log1p(100), length.out = 21)) / 

100 

alpha_intervals <- alpha_ld50 * log_pcts 

beta_intervals <- beta_ld50 * log_pcts 

 

 At a conceptual level, we are taking logarithmically spaced steps of 
percentages then we multiply those logarithmically spaced steps by the relevant 
LD50 to establish the intervals. This gives us a fine-grained view of low values, 
which is important as the collapse of a special role for high centrality nodes occurs 
at very low values for 𝛼; typically below 1% of 𝛼’s LD50. We prefer the order of 
operations in which we take the logs of percentages then multiply by the LD50 over 
simply taking the logarithms of LD50s in that it results in scale intervals that are 
intuitively comparable regardless of the maximum. Since 𝛽 LD50s are always 
greater than 𝛼 LD50s, our order of operations biases the analysis against our 
hypothesis that low levels of 𝛼 qualitatively change the nature of diffusion. 
 

Right censorship  
 
When both parameters were set to extremely low values, the simulation can take a 
very long time to reach mid-saturation in all 1,000 trials per cell. We allowed 
simulations to run for either 1,000 iterations (Twitter, preferential attachment with 
10,000 nodes, and all small world networks) or 5,000 iterations (DNC email, Enron 
email, and preferential attachment with 1,000 nodes). Nonetheless, some cells still 
had right-censored trials. If less than 10% of trials in a cell were right-censored, we 
top-coded those right-censored cells at the maximum number of iterations the trial 
was allowed to run. If more than 10% of trials in a cell were right-censored, we 
treated that cell as missing. The level of missing data and the top-code for each 
treatment condition in each cell of parameter space can be found in the replication 
files ending “.rds” as the columns missing_reps and max.ticks, respectively. This top-
coding has the effect of biasing the results slightly towards parity between 
experimental conditions, especially in the region of parameter space where 𝛼 = 0 
and 𝛽 is close to 0. Since right-censorship is almost entirely an issue for cells where 
𝛼 = 0, top-coding has the effect of making the plane where 𝛼 = 0 more similar to 
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the rest of parameter space. This biases our results against our argument that 
opinion leadership is distinct to 𝛼 = 0.  

Readers who prefer to see the results with differing tolerance for right-
censored data may use the replication files and change the parameter p_censored_ok 
in the main RMarkdown file. For instance, to drop cells entirely that have any right-
censored trials, please set p_censored_ok <- 0. (Note that Twitter has some missing 
data for every cell in the crucial left column and so dropping p_censored_ok < .03 will 
drop the left column of the heat map with the result that the scale is radically 
compressed and the heat map will display noise among substantively similar cases.) 
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CDF plots of 𝜶 = 𝟎, 𝜷 = 𝑳𝑫𝟓𝟎 and 𝜶 =
𝟎. 𝟎𝟎𝟐𝟔𝑳𝑫𝟓𝟎,𝜷 = 𝑳𝑫𝟓𝟎 for random and high 

betweenness seeds 
 
Figure 3 illustrates that the key transition in parameter space occurs when 

medium to high network influence (β) combines with either zero or a tiny bit of 
external influence (α). In Figure S1, we visualize the micro-dynamics of the rapid 
decay of the importance of central nodes with spaghetti plots showing individual 
CDFs with ribbon plots showing the central tendencies. Note that the top panels are 
a minor variation on figure 2 but the introduction of the spaghetti plots shows that 
the principal difference between random and high betweenness seeds is not how 
fast they can be, but how slow, with the fastest CDFs being similar, but random 
seeds having many glacial CDFs.  

The bottom panels illustrate three things about the micro-level effect of 
introducing a modicum of external influence. First, as would be expected from the 
corresponding cell in the heat map, the two bottom panels are much more similar 
than are the top two panels. Second, the bottom-left panel (displaying randomly 
seeded simulations with low external influence) has CDFs that are still qualitatively 
s-curves, validating that this point in parameter space really is primarily an 
endogenous process and the external influence at this level is mostly a catalyst to 
change the nature of endogenous diffusion rather than an appreciable diffusion 
force itself. Third, the introduction of a small external influence makes the 
individual CDFs less stochastic and in particular nearly eliminates laggard outliers. 
In contrast, when α = 0, β = LD50 (top panels), there is enormous variation in 
diffusion trajectories, especially with a random seed node. At the micro-level, a 
small amount of external influence not only makes diffusion faster, it makes it more 
predictable.  

This is all illustrated with a difference between α set to zero versus about one 
quarter of a percent of LD50 and even that tiny increment shows visually striking 
differences. At slightly larger levels of α of 1% or 2% of LD50, the CDFs based on 
random vs. high betweenness seeds are indistinguishable.  
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Figure S1 

 
 
CDFs for diffusion on a preferential attachment network with a thousand nodes. 
The mean trajectory with confidence intervals for each panel is shown as a ribbon 
plot. Individual trials are shown as spaghetti plots. The panels represent α = 0, 
β=LD50 (top) versus 𝛼 = 0.26% × 𝐿𝐷50, 𝛽 = 𝐿𝐷50 (bottom) and random seeds 
(left) vs high betweenness seeds (right).  
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Correspondence of Figure 2 to Figure 3 
 
 

Figure S2 

 
Same as Figure 2 but annotated with brackets to highlight the mean time to mid-
saturation for randomly seeded trials (t1) and trials seeded with the highest 
centrality node (t2). The heat dimension in all heat maps (e.g., the top panel of 
figure 3) represents the ratio of t1:t2. Likewise, the height of the sparklines in the 
bottom panel of figure 3b represents the ratio of t1:t2. 
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Preferential attachment networks 
 
In Figure S3, we reproduce the top panel of figure 3 (based on 1,000 node 

preferential attachment networks) and replicate it for networks with 10,000 nodes.  
 

Figure S3 

 
Heatmap of ratio of time to adoption. Gray cells represent right censored cases 
after 5,000 iterations (1,000 nodes) or 1,000 iterations (10,000 nodes). Ratio of 
time to adoption in simulations targeting the highest betweenness node versus 
targeting a randomly chosen node in the network. The sampled graphs follow a 
preferential attachment network (either 1,000 or 10,000 nodes, 1 edge/node, and 
an exponent of 1). 
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Small world networks 
 
In Figures S4 and S5, we rerun the simulation on Watts-Strogatz small world 

networks. A small number of generated small world networks had disconnected 
components. We replaced these networks with newly generated networks to bias 
the simulation in favor of opinion leadership. Aside from the different network 
(small world vs. preferential attachment), the figures are similar to the top panel of 
Figure 3. 

 

Figure S4 

 
Heatmap of ratio of time to adoption. Gray cells represent right censored cases 
after 1,000 iterations. Ratio of time to adoption in simulations targeting the 
highest betweenness node versus targeting a randomly chosen node in the 
network. The sampled graphs follow a Watts-Strogatz small world network 
(either 1,000 or 10,000 nodes, 3 edges/node, and 2% probability of random 
rewiring). 
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Figure S5 

 
Heatmap of ratio of time to adoption. Gray cells represent right censored cases 
after 1,000 iterations. Ratio of time to adoption in simulations targeting the 
highest betweenness node versus targeting a randomly chosen node in the 
network. The sampled graphs follow a Watts-Strogatz small world network (1,000 
nodes, 2-4 edges/node, and 2% probability of random rewiring).  
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Empirical networks 
 
In Figure S6, we rerun the simulation using three empirical networks. The 

specification is otherwise similar to the top panel of Figure 3.  
 

Figure S6  

 
Heatmap of ratio of time to adoption. Gray cells represent points in parameter 
space where over 10% of trials were right censored after 5000 iterations (DNC 
and Enron) or 1000 iterations (Twitter). For cells with less than 10% right-
censorship, right-censored trials were top-coded at 1000 iterations (Twitter) or 
5000 iterations (DNC and Enron).  
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Closeness centrality 
 
We primarily use betweenness centrality to identify seed nodes, but in this 

alternate specification (figure S7) we experiment with closeness centrality as a 
demonstration that our findings are not limited to using betweenness to identify 
seed nodes.  

Figure S7 

 
 
Heatmap of ratio of time to adoption comparing simulations seeded with the 
highest closeness node versus seeded at random. Gray cells represent >10% right 
censored cases after 1,000 iterations (small world) or 5,000 iterations 
(preferential attachment and Enron). Aside from using closeness centrality to 
choose the seed node, the specification is identical to that in Figures 3 (top panel), 
S5 (middle panel), and S6 (middle panel). 
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Multiple seeds 
 
We primarily use a single seed node. In figures S8, S9, and S10, we compare 

this to 1% seeds and 5% seeds. Figure S8 shows the ratio of mid-saturation 
diffusion times for random versus targeted nodes when 𝛽 = 𝐿𝐷50 and 𝛼 varies 
along the usual log scale between 0 and LD50. LD50 values are re-estimated for 1% 
and 5% seeds. Figures S9 and S10 show heat maps for preferential attachment 
graphs (1,000 nodes) and DNC E-mail (548 nodes), respectively. 

Because betweenness centrality scores a node’s importance to the network 
irrespective of whatever nodes have already been identified, it is not well suited for 
identifying multiple seeds. We thus identify multiple seeds using Borgatti’s 
keyplayer algorithm as implemented in the R library influenceR to identify a 5% 
seed.(8, 9). 

The multiple seed results differ in two notable ways from results based on a 
single node. First, as shown in Figure S8, the baseline effect of targeted seeding in 
the absence of external influence is much smaller. In the region of parameter space 
that is ideal for opinion leadership (𝛼 = 0, 𝛽 = 𝐿𝐷50), a single random seed takes 
150% longer than a maximum betweenness seed to saturate half of a preferential 
attachment network and 881% longer to saturate the DNC e-mail network. In 
contrast, a 1% random seed versus a 1% seed identified by the keyplayer algorithm 
takes 15% longer to saturate half of a preferential attachment network and 47% for 
DNC. The comparable figures for a 5% seed are 8% on a preferential attachment and 
15% longer on DNC e-mail. Thus, choosing an optimal 5% seed is at least an order of 
magnitude less important than choosing an optimal single seed. 

Second, as shown in figures S9 and S10, the drop-off in the advantage of a 
highly targeted seed diminishes with multiple seeds. This is fairly minimal with a 
1% seed as both preferential attachment and DNC e-mail still show something like 
the yellow stripe and blue field pattern familiar from this paper’s other heat maps. 
The only difference is that the 1% seed heat maps show a gradient for values of 𝛼 <
0.03 ×  𝐿𝐷50. Nonetheless, the 1% seed heat maps mostly resemble the single seed 
heat maps. The gradient extends much further with a 5% seed and now appears 
smooth. Note that the heat map has a log-log scale, such that even with a 5% seed, 
the baseline advantage (𝛼 = 0, 𝛽 = 𝐿𝐷50) nearly disappears by the time 𝛼 >
0.3 × 𝐿𝐷50. However, this should not be discounted as this is a plausible region of 
parameter space for many empirical applications.  

We must thus conclude that the effect of targeting multiple seeds is much 
smaller but also more robust to the introduction of external influence than is 
targeting a single seed and that both the decline in the baseline effect and the 
robustness to the introduction of external influence are roughly proportional to the 
size of the seed. Under many realistic scenarios, targeting multiple seeds may be 
practical so long as the cost of identifying and targeting specific seeds is low and 
external influence is very expensive and/or very ineffective. Outlining the contours 
of this trade-off is an issue for future research. 
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Figure S8 

 
 
Line graph of ratio of time to adoption comparing simulations on 1,000 node 
preferential attachment networks (top panel) or DNC email network (bottom 
panel) with random seed(s) to targeted seed(s) identified by maximum 
betweenness for a single seed or keyplayer for 1% or 5% seeds. Both panels 
assume high levels of network diffusion (𝛽 = 𝐿𝐷50) but vary external influence 
(𝛼) as a percentage of each LD50 value, plotted on a logarithmic scale. This is the 
equivalent to the top row of cells in Figures S9 and S10 but substituting a y-axis 
for the heat dimension. In both preferential attachment and DNC, the baseline 
effect of targeting a single node is higher but more sensitive to rising 𝛼.  

 

 
 

 



 

16 
 

Figure S9 

  
 
Heat maps summarizing ratio of time to adoption for random seed(s) versus 
targeted seed(s) on preferential attachment networks with 1,000 nodes. Targeted 
seeds are identified by maximum betweenness for a single seed or keyplayer for 
1% or 5% seeds. Gray cells represent >10% right censored cases after 5,000 
iterations.  
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Figure S10 

 
 
Heat maps summarizing ratio of time to adoption for random seed(s) versus 
targeted seed(s) on DNC email network. Targeted seeds are identified by 
maximum betweenness for a single seed or keyplayer for 1% or 5% seeds. Gray 
cells represent >10% right censored cases after 5,000 iterations. 
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Status-biased Diffusion 
 
In most of our models we treat network-based diffusion pressure as 

proportional to the percentage of a node’s alters who have already adopted. In 
Figure S11 we allow high degree nodes to have more influence. Theoretically this 
reflects a heuristic that nodes see their high degree neighbors as prestigious and 
especially worthy of emulation. In the status-biased model, the baseline effect (𝛼 =
0, 𝛽 = 𝐿𝐷50) is slightly stronger than in the standard model (midpoint saturation is 
3.3x vs 2.7x faster with a hub seed). However, both models show this paper’s 
general pattern that the advantage for seeding with the most central node 
disappears with the introduction of any external influence.  

A quick overview of status-biased diffusion in our model. 
Take the following network: 

𝐴 =

[
 
 
 
 
0 1 1 1 0
1 0 0 0 0
1 0 0 0 1
1 0 0 0 0
0 0 1 0 0]

 
 
 
 

 

Normally we row normalize and multiply by a column vector to get the 
percentage of one’s alters who have adopted.  Concretely, let’s say person 1 (row / 
column 1) is the only adopter.  We would do the following: 

[
 
 
 
 

0 1 3⁄ 1 3⁄ 1 3⁄ 0
1 0 0 0 0

1 2⁄ 0 0 0 1 2⁄
1 0 0 0 0
0 0 1 0 0 ]

 
 
 
 

[
 
 
 
 
1
0
0
0
0]
 
 
 
 

=

[
 
 
 
 

0
1

1 2⁄
1
0 ]

 
 
 
 

 

Adoption is then proportional to the resulting column vector. 
For figure S11, we bias in favor of high status people by multiplying each 

column by a function of its sum (the person’s degree) before row normalizing.  
(Namely, we multiply but the log of degree in accordance with our intuition that 
one’s status bias increases with the order of magnitude of one’s popularity.)  For 
example, the columns multiplied by their sums would give: 

[
 
 
 
 
0 1 2 1 0
3 0 0 0 0
3 0 0 0 1
3 0 0 0 0
0 0 2 0 0]

 
 
 
 

 

And the row-normalized multiplication would be: 

[
 
 
 
 

0 1 4⁄ 1 2⁄ 1 4⁄ 0
1 0 0 0 0

3 4⁄ 0 0 0 1 4⁄
1 0 0 0 0
0 0 1 0 0 ]

 
 
 
 

[
 
 
 
 
1
0
0
0
0]
 
 
 
 

=

[
 
 
 
 

0
1

3 4⁄
1
0 ]

 
 
 
 

 

This is equivalent to taking the weighted percentage of one’s alters who have 
adopted, where the weights are given by the degree.  If the degree of the 𝑖-th node is 
𝑑𝑖, then the weighted percentage of alters is 
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(
𝑑𝑖

∑ 𝑑𝑖
𝑛
𝑖=1

)𝟏(𝑖 adopted) 

 
When unweighted, 𝑑𝑖 = 1 for all 𝑖, and this simplifies to  

(
1

𝑛
)𝟏(𝑖 adopted) 

 

Figure S11 

 
 
Heat maps summarizing ratio of time to adoption for random seed(s) versus 
targeted seed(s) on preferential attachment network. The top panel assumes 
nodes are equally influential and the bottom panel assumes high degree nodes are 
more influential. Gray cells represent >10% right censored cases after 5,000 
iterations. 
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Heterogeneity of Susceptibility to External Influence 
 
In most of our simulations, we assume that all nodes are equally susceptible 

to external influence. However, we can imagine that some people are invulnerable 
to external influence. Perhaps they do not see television advertisements as they 
either do not own a television or only watch Netflix. Or in the case of government 
mandates, maybe some firms are exempt from the mandate by virtue of being below 
a certain threshold of employees or having no government contracts. (The employee 
threshold is particularly important in France and reliance on government contracts 
in the United States).(10, 11) Or maybe some people are simply intensely skeptical 
of external influence.  

To account for these possibilities, in Figure S12 we relax the assumption of 
equal susceptibility to external influence by allowing for the possibility that 20% or 
50% of nodes completely ignore external influence. Note that under this assumption 
the LD50 for 𝛼 is undefined, however in a qualitative sense the LD50 is still a 
reasonable approximation (albeit a conservative one) so long as the fraction of 
nodes invulnerable to external influence is not too high. 

The results with 20% of nodes being invulnerable to external influence are 
indistinguishable from those where all nodes are susceptible to external influence. 
The results with 50% of nodes being invulnerable are also broadly similar but have 
two properties of note. First, the bottom row of the heat map where 𝛼 = 0 is 
undefined. This is necessarily true as the measure is based on how many time 
periods it takes for adoptions to exceed 50% and this is impossible for these 
positions in parameter space. Second, there is a slightly longer gradient than usual 
as the effect of highly central seeds takes a bit higher values of 𝛼 to fully fade out. 
However, this is easily explicable by the LD50 being undefined and us substituting a 
value that in a qualitative sense is probably about half as big as it ought to be. The 
model is remarkably robust to a small to moderate number of nodes being 
completely invulnerable to external influence. This reflects the classic two-step flow 
model where many people are completely inattentive to mass media on a particular 
subject but learn about new products, ideas, and behaviors from locally influential 
opinion leaders who themselves are attentive to mass media.(12)  
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Figure S12 

 
 
Heat maps summarizing ratio of time to adoption for random seed(s) versus 
targeted seed(s) on preferential attachment network. The top panel is the 
standard model. The middle panel and bottom panel show results when 20% or 
50%, respectively, of nodes completely ignore external influence. Gray cells 
represent >10% right censored cases after 5,000 iterations. 
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