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Teaser: Student of Games combines search, learning, and game-theoretic reason-
ing to play chess, go, poker, and Scotland Yard.

Games have a long history as benchmarks for progress in artificial intelli-
gence. Approaches using search and learning produced strong performance
across many perfect information games, and approaches using game-theoretic
reasoning and learning demonstrated strong performance for specific imper-
fect information poker variants. We introduce Student of Games, a general-
purpose algorithm that unifies previous approaches, combining guided search,
self-play learning, and game-theoretic reasoning. Student of Games achieves
strong empirical performance in large perfect and imperfect information games
— an important step towards truly general algorithms for arbitrary environ-
ments. We prove that Student of Games is sound, converging to perfect play
as available computation and approximation capacity increases. Student of
Games reaches strong performance in chess and Go, beats the strongest openly
available agent in heads-up no-limit Texas hold’em poker, and defeats the
state-of-the-art agent in Scotland Yard, an imperfect information game that
illustrates the value of guided search, learning, and game-theoretic reasoning.
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Introduction

In the 1950s, Arthur L. Samuel developed a checkers-playing program that employed what is
now called minimax search (with alpha-beta pruning) and “rote learning” to improve its evalu-
ation function via self-play (/). This investigation inspired many others, and ultimately Samuel
co-founded the field of artificial intelligence (2) and popularized the term “machine learning”.
A few years ago, the world witnessed a computer program defeat a long-standing professional at
the game of Go (3). AlphaGo also combined learning and search. Many similar achievements
happened in between, such as the race for super-human chess leading to DeepBlue (4) and
TD-Gammon teaching itself to play master-level performance in Backgammon through self-
play (5), continuing the tradition of using games as canonical markers of mainstream progress
across the field.

Throughout the stream of successes, there is an important common element: the focus on
a single game. Indeed, DeepBlue could not play Go, and Samuel’s program could not play
chess. Likewise, AlphaGo could not play chess; however its successor AlphaZero (6) could,
and did. AlphaZero demonstrated that a single algorithm could master three different perfect
information games — where the game’s state is known to all players — using a simplification
of AlphaGo’s approach, and with minimal human knowledge. Despite this success, AlphaZero
could not play poker, and the extension to imperfect information games was unclear.

Meanwhile, approaches taken to achieve super-human poker Al were substantially different.
Strong poker play has relied on game-theoretic reasoning to ensure that private information is
concealed effectively. Initially, super-human poker agents were based primarily on computing
approximate Nash equilibria offline (7). Search was then added and proved to be a crucial
ingredient to achieve super-human success in no-limit variants (8—10). Training for other large
games have also been inspired by game-theoretic reasoning and search, such as Hanabi (11, 12),
The Resistance (/3), Bridge (/4), AlphaStar (/5), and (no-press) Diplomacy (/6—18). Here
again, however, despite remarkable success: each advance was still on a single game, with
some clear uses of domain-specific knowledge and structure to reach strong performance.

In this paper, we introduce Student of Games (SOG), an algorithm that generalizes the
class of games in which strong performance can be achieved using self-play learning, search,
and game-theoretic reasoning. SOG uses growing-tree counterfactual regret minimization (GT-
CFR): an anytime local search that builds subgames non-uniformly, expanding the tree toward
the most relevant future states while iteratively refining values and policies. In addition, SOG
employs sound self-play: a learning procedure that trains value-and-policy networks using both
game outcomes and recursive sub-searches applied to situations that arose in previous searches.

Student of Games achieves strong performance in multiple challenge domains with both
perfect and imperfect information — an important step towards truly general algorithms that
can learn in arbitrary environments. Applications of traditional search suffer well-known prob-
lems in imperfect information games (2, Section 5.6.2). Evaluation has remained focused on
single domains (e.g. poker) despite recent progress toward sound search in imperfect informa-
tion games (8, 19, 20). Student of Games fills this gap, using a single algorithm with minimal
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domain-specific knowledge. Its search is sound (20) across these fundamentally different game
types: it is guaranteed to find an approximate Nash equilibrium by re-solving subgames to re-
main consistent during online play, and yields low exploitability in practice in small games
where exploitability is computable. SOG demonstrates strong performance across four differ-
ent games: two perfect information (chess and Go) and two imperfect information (poker and
Scotland Yard). Finally, unlike poker, Scotland Yard has substantially longer search horizons
and game lengths, requiring long-term planning.

Background and Terminology

Student of Games will be presented using the Factored-Observation Stochastic Games (FOSG)
formalism. For further details on the formalism, see (21, 22).

A game between two players starts in a specific world state w'™" and proceeds to the suc-
cessor world states w € WV as a result of players choosing actions a € A until the game is over
when a terminal state is reached. A world state can be categorized as a decision node, a termi-
nal node, or a chance node. At a decision node, player P(w) acts. A terminal node marks the
end of a game where no players act. A chance node is a special node representing a stochastic
event, such as a die roll, with a fixed distribution. At any world state w, A(w) C A refers to
those actions that are available, or legal, in world state w. Sequences of actions taken along
the course of the game are called histories and denoted h € H, with A’ C h denoting a prefix
history (subsequence). At terminal histories, z C H, each player i receives a utility u;(z).

An information state is a state with respect to one player’s information. Specifically, s; € S;
for player 7 is a set of histories that are indistinguishable due to missing information. A simple
example is a specific decision point in poker where player ¢ does not know the opponent’s private
cards; the histories in the information state are different only in the chance event outcomes that
determine the opponent’s private cards, since everything else is public knowledge. A player ¢
plays a policy 7; : S; — A(A), where A(A) denotes the set of probability distributions over
actions A. The goal of each player is to find a policy that maximizes their own expected utility.

Every time a player takes an action, each player gets a private observation Oy (w, a, w')
and a public observation O, (w, a, w’) as a result of applying action a, changing the game’s
state from w to w’. In perfect information games, the public observation contains complete
information, i.e., Opw(w, a,w') = (w, a,w’) making any private observations uninformative.
Furthermore, the transition function depends only on the active player’s action, i.e., 7 (w,a) =
T (w, ap(). In contrast, imperfect information games have information asymmetry between
players and some players will receive informative private observations. A public state s, (h) €
Spup 18 the sequence of public observations encountered along the history h. For example, a
public state in Texas hold’em poker is represented by initial public information (stack sizes
and antes), the betting history, and any publicly revealed board cards. Let S;(s,u) be the set
of possible information states for player 7 given s,,,: each information state s; € Si(Spub) is
consistent with public observations in sy, but has different sequences of private observations.
Supplementary material shows a full example of a FOSG in Figure [ST| and an example public
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tree in Figure [S2]

Imperfect information games introduce additional complexity, as S;(spun) can now contain
multiple information states that the player’s policy depends on. For example, in poker the
information states would contain the private cards of player . Since past actions can leak
otherwise private information, agents must reason about which information states players could
be in to act soundly. A public belief state is defined as 5 = (spu, '), where the range (or beliefs)
7 € A(S1(Spub)) X A(S2(spup)) is a pair of distributions over possible information states for both
players representing the beliefs over information states in s,,,. A basic depiction of the various
components of a public belief state is depicted in Figure

Suppose players use a policy profile 7 = (7, m2). Denote the expected utility to player to
player ¢ as u;(m, m2) and —i as the opponent of player i. A best response to a specific opponent
policy 7_; is any policy 7% that achieves maximal utility against 7_;: 7> € {m; | u;(m;, 7_;) =
max, w;(m;, m_;)}. A policy profile 7 is a Nash equilibrium if and only if 7 is a best response
to m and 79 is a best response to m;. There are also approximate equilibria: 7 is an e-Nash
equilibrium if and only if u; (7%, 7_;) — u;(m;, 7_;) < € for all players 1.

In two-player zero-sum games, Nash equilibria are optimal because they maximize worst-
case utility guarantees for both players. This worst-case utility is unique and is called the game’s
value. For such games, a standard metric to represent empirical convergence rate is a strategy’s
exploitability: how much, on average, a player will lose against a best response relative to a
Nash equilibrium. For a given policy profile in a two-player zero-sum game m = (7, ),
EXPLOITABILITY () = (maxy; u1 (7], 7o) +maxy, us(m, 7)) /2. Also, equilibrium strategies
in two-player zero-sum games are interchangeable: if 7% and 72 are Nash equilibria, then
(md, 78) and (78, 72!) are also both equilibria. These properties mean that a Nash equilibrium
plays perfect defence: it will not lose on expectation against any opponent, even one that is
playing a best response to the Nash equilibrium. If the opponent makes mistakes, then the Nash
equilibrium policy can win. Thus, it is reasonable for an agent to compute and play a Nash
equilibrium, or an approximation to one with low exploitability.

Although the FOSG formalism generalizes beyond two-player zero-sum games, the theoret-
ical guarantee of Nash equilibria outside of this setting is less meaningful and it is unclear how
effective they would be (for example, in games with more than two players). In this work, we
focus on the two-player zero-sum setting. To put SOG in context, we begin with a high-level
description of several techniques that have been dominant in this setting, and then contrast SOG
with existing work.

Tree Search and Machine Learning

The first major milestones in the field of game-playing Al were obtained by efficient search
techniques inspired by the minimax theorem (/, 4). In a two-player zero-sum game with per-
fect information, the approach uses depth-limited search starting from the current world state
wy, along with a heuristic evaluation function to estimate the value of states beyond the depth
limit, h(w;,4), and game-theoretic reasoning to back up values (23). Researchers developed



notable search enhancements (24, 25) that greatly improved performance, leading to IBM’s
super-human DeepBlue chess program (4).

This classical approach was, however, unable to achieve super-human performance in Go,
which has substantially larger branching factor and state space complexity than chess. Prompted
by the challenge of Go (26), researchers proposed Monte Carlo tree search (MCTS) (27, 28).
Unlike minimax search, MCTS builds trees via simulations, starting with an empty tree rooted
by w,; and expanding the tree by adding the first state encountered in simulated trajectories that
is not currently in the tree, and finally estimating values from rollouts to the end of the game.
MCTS led to substantially stronger play in Go and other games (29), attaining 6 dan amateur
level in Go. However, heuristics leveraging domain knowledge were still necessary to achieve
these milestones.

In AlphaGo (3), value functions and policies are incorporated, learned initially from human
expert data, and then improved via self-play. A deep network approximates the value function
and a prior policy helps guide the selection of actions during the tree search. The approach
was the first to achieve super-human level play in Go (3). AlphaGo Zero removed the initial
training from human data and Go-specific features (30). AlphaZero reached state-of-the-art
performance in chess and Shogi as well as Go, using minimal domain knowledge (6).

Student of Games, like AlphaZero, combines search and learning from self-play, using min-
imal domain knowledge. Unlike MCTS, which is not sound for imperfect information games,
S0G’s search algorithm is based on counterfactual regret minimization and is sound for both
perfect and imperfect information games.

Game-Theoretic Reasoning and Counterfactual Regret Minimization

In imperfect information games, the choice of strategies that arise from hidden information can
be crucial to determining each player’s expected rewards. Simply playing too predictably can be
problematic: in the classic example game of Rock, Paper, Scissors, the only thing a player does
not know is the choice of the opponent’s action, however this information fully determines their
achievable reward. A player choosing to always play one action (e.g. rock) can be easily beaten
by another playing the best response (e.g. paper). The Nash equilibrium plays each action with
equal probability, which minimizes the benefit of any particular counter-strategy. Similarly, in
poker, knowing the opponent’s cards or their strategy could yield substantially higher expected
reward, and in Scotland Yard, players have a higher chance of catching the evader if their current
location is known. In these examples, players can exploit any knowledge of hidden information
to play the counter-strategy resulting in higher reward. Hence, to avoid being exploited, players
must act in a way that does not reveal their own private information. We call this general
behavior game-theoretic reasoning because it emerges as the result of computing (approximate)
minimax-optimal strategies. Game-theoretic reasoning has been paramount to the success of
competitive poker Al over the last 20 years.

One algorithm for computing approximate optimal strategies is counterfactual regret mini-
mization (CFR) (31). CFR is a self-play algorithm that produces policy iterates (s, ) € A(A)



for each player 7 at each of their information states s in a way that minimizes long-term aver-
age regret. As a result, the (appropriately weighted) average policy over all T iterations 7/
converges to an e-Nash equilibrium at a rate of O(1/+/T). At each iteration, ¢, counterfactual
values v!(s, a) are computed for each action a € A(s) and immediate regrets for not playing a,
rt(s,a) = vi(s,a) = ,ca(s) T (8, @)vi (s, a), are computed and tabulated in a cumulative regret
table storing R” (s,a) = Zthl r'(s,a). A new policy is computed using regret-matching (32):
mitl(s,.) = %, where [z]" = max(x,0), if >, [R'(s,a)]™ > 0, or the uniform
distribution otherwise.

CFR™ (33) is a successor of CFR that played a key role in solving the game of heads-
up limit hold’em poker, the largest imperfect information game to be solved to date (34). A
key change in CFR™ is a different policy update mechanism, regret-matching™, which defines
cumulative values slightly differently: Q'(s,a) = (Q""!(s,a) + r'(s,a))™, and 7" (s,a) =
Q'(s.0)/ 3, Q(s.b).

A common form of CFR (or CFR™) is one that traverses the public tree of public states,
rather than the classical extensive-form game tree of world states (and information states).
Quantities required to compute counterfactual values, such as each player’s probabilities of
reaching each information state under their policy (called their range) are maintained as beliefs.
Finally, leaf nodes can be evaluated directly using the ranges, chance probabilities, and utilities
(often more efficiently (35)).

Imperfect Information Search, Decomposition, and Re-Solving

Solution concepts like Nash equilibria and minimax are defined over policy profiles. A player’s
policy is fixed during play and solely a function of the information state. Search could instead
be described as a process, which might return different action distributions at subsequent visits
to the same state. That is, when using search the resulting policy can depend on more than the
just the information state, such as time-limits, non-deterministic computation, stochastic events
from either the game or within the search, or the outcome of other searches. These factors
introduce important subtleties such as solution compatibility across different searches (20).
CFR has been traditionally used as a game-solving engine, computing entire policies via
self-play. Each iteration traverses the entire game tree or a sampled subtree, recursively com-
puting the counterfactual values for an information state from the values of its successor states.
Suppose one wanted a policy for a part of the game up to some depth d > 0. If there was an
oracle to compute the counterfactual values each player would receive at depth d, then each
iteration of CFR could be run to depth d and query the oracle to return the values. As a result,
the policies would not be available at depths d’ > d. Summarizing the policies below depth d
by a set of values which can be used to reconstruct policies at depth d and beyond is the basis
of decomposition in imperfect information games (36). A subgame in an imperfect information
game is a game rooted at a public state s,,,. In order for a subgame to be a proper game, it is
paired with a belief distribution - over initial information states, s € S;(spu). This is a strict
generalization of subgames in perfect information games, where every public state has exactly



one information state (which is, in fact, no longer private as a result) and a singleton belief with
probability 1 for both players.

Subgame decomposition has been a crucial component of most recent developments of
poker Al that scale to large games such as no-limit Texas hold’em (8—70, 37). Subgame de-
composition enables local search to refine the policy during play analogously to the classical
search algorithms in perfect information games and traditional Bellman-style bootstrapping to
learn value functions (8, 13, 37, 38). Specifically, a counterfactual value network (CVN) repre-
sented by parameters 6 encodes the value function vg(3) = {vi(8i) }s,es.(spu) ic{1,2}» Where 3
includes player’s beliefs over information states for the public information at s,;,. The function
vg can then be used in place of the oracles mentioned above to summarize values of the sub-
trees below s,u,. An example of depth-limited CFR solving using decomposition is shown in
Figure 2|

Safe re-solving is a technique that generates subgame policies from only summary informa-
tion of a previous (approximate) solution: a player’s range and their opponent’s counterfactual
values. This is done by constructing an auxiliary game with specific constraints. The subgame
policies in the auxiliary game are generated in a way that preserves the exploitability guaran-
tees of the original solution, so they can replace the original policies in the subgame. Thorough
examples of the auxiliary game construction are found in (36) and (19, Section 4.1).

Continual re-solving is an analogue of classical game search, adapted to imperfect informa-
tion games, that uses repeated applications of safe re-solving to play an episode of a game (8).
It starts by solving a depth-limited game tree rooted at the beginning of the game, and search
is a re-solving step. As the game progresses, for every subsequent decision at some infor-
mation state s;, continual re-solving will refine the current strategy by re-solving at s;. Like
other search methods, it is using additional computation to more thoroughly explore a specific
situation encountered by the player.

Related Work

SOG combines many elements that were originally proposed in AlphaZero and its predecessors,
as well as DeepStack (3, 6, 8, 30). Specifically, SOG uses the combined search and learning us-
ing deep neural networks from AlphaGo and DeepStack, along with game-theoretic reasoning
and search in imperfect information games from DeepStack. The use of public belief states
and decomposition in imperfect information games has been a critical component of success in
no-limit Texas Hold’em poker (8-10, 19, 36, 37, 39). The main difference from AlphaZero is
that the search and self-play training in SOG are also sound for imperfect information games,
and evaluation across game types. The main difference from DeepStack is the use of sub-
stantially less domain knowledge: the use of self-play (rather than poker-specific heuristics) to
generate training data and a single network for all stages of the game. The most closely re-
lated algorithm is Recurrent Belief-based Learning (ReBeL) (37). Like SOG, ReBeL combines
search, learning, and game-theoretic reasoning via self-play. The main difference is that SOG
is based on (safe) continual re-solving and sound self-play. To achieve ReBeL’s guarantees,



its test-time search must be conducted with the same algorithm as in training, whereas SOG
can use any belief-based value-and-policy network of the form described in [Counterfactuall
|Value-and-Policy Networks| (similarly to e.g. AlphaZero, which trains using 800 simulations
but then can use substantially larger simulation limits at test-time, which is needed for strong
performance in many perfect information domains). SOG is also validated empirically across
different challenge games of different game types, whereas ReBeL is only evaluated on two
imperfect information games.

There has been considerable work in search for imperfect information games. One method
that has been quite successful in practice is determinization: at decision-time, a set of of can-
didate world states are sampled, and some form of search is performed (40, 41). In fact, the
baseline player we use to compare SOG to in Scotland Yard, PimBot (42, 43), is based on
these methods and achieved state-of-the-art results. However, these methods are not guaran-
teed to converge to an optimal strategy over time. We demonstrate this lack of convergence in
practice over common search algorithms and standard reinforcement learning (RL) benchmarks
in supplementary text. In contrast, the search in SOG is based on game-theoretic reasoning.
Other algorithms have proposed adding game-theoretic reasoning to search: Smooth UCT (44)
combines Upper Confidence Bounds applied to Trees (UCT) (27) with fictitious play, however
its convergence properties are not known. Online Outcome Sampling (45) derives an MCTS
variant of Monte Carlo CFR (46); however, OOS is only guaranteed to approach an approxi-
mate equilibrium at a single information state (local consistency) and has not been evaluated in
large games. GT-CFR used by SOG makes use of sound search based on decomposition and is
globally consistent (20, 36).

There have been a number of RL algorithms that have been proposed for two-player zero-
sum games: Fictitious Self-Play (47), Policy-Space Response Oracles (PSRO) (48), Double
Neural CFR (49), Deep CFR and DREAM (50, 51), Regret Policy Gradients (52), Exploitability
Descent (53), Neural Replicator Dynamics (NeuRD) (54), Advantage Regret-Matching Actor
Critic (55), Friction FoReL (56), Extensive-form Double Oracle (XDO) (57), Neural Auto-
curricula (NAC) (58), and Regularized Nash Dynamics (R-NaD) (59). These methods adapt
classical algorithms for computing (approximate) Nash equilibria to the RL setting with sam-
pled experience and general function approximation. As such, they combine game-theoretic
reasoning and learning. Several of these methods have shown promise to scale: Pipeline PSRO
defeated the best openly available agent in Stratego Barrage; ARMAC showed promising results
on large poker games. R-NaD truly demonstrated scale by obtaining human-level performance
in the very large game of Stratego (59). In Starcraft, AlphaStar was able to use human data
and game-theoretic reasoning to create a master-level real-time strategy policy (/5). However,
none of them can use search at test-time to refine their policy; this shifts a learning and func-
tion approximation burden onto training, typically making these methods more computationally
demanding in both training time and model capacity to encode a policy or value function.

Lastly, there have been works that use some combination of search, learning, and/or game-
theoretic reasoning applied to specific domains. Neural networks have been trained via Q-
learning to learn to play Scotland Yard (60); however, the overall play strength of the resulting




policy was not directly compared to any other known Scotland Yard agent. In poker, Supre-
mus proposed a number of improvements to DeepStack and demonstrated that they make a
big difference when playing human experts (38). Another work used a method inspired by
DeepStack applied to The Resistance (/3). In the cooperative setting, several works have made
use of belief-based learning (and search) using public subgame decomposition (12, 61, 62),
applied to Hanabi (/7). Learning and game-theoretic reasoning were also recently combined
to produce agents that play well with humans without human data on the collaborative game
Overcooked (63). Search and reinforcement learning were combined to produce a bridge bid-
ding player that cooperated with a state-of-the-art bot (WBridge5) and with humans (/4). Of
considerable note is the game of (no-press) Diplomacy. In that game, game-theoretic reason-
ing was combined with learning in Best Response Policy Iteration (/6), and game-theoretic
search and supervised learning were combined in (/7) reaching human-level performance on
the two-player variant. Recently, all three were combined in DORA (/8), which learned to play
Diplomacy without human data reaching human-level performance on the two-player variant,
and subsequently Cicero (64) reached human-level on the full game including communication
with humans via language models. The main difference between SOG and these works is that
they focus on specific games and exploit domain-specific knowledge to attain strong perfor-
mance.

Descriptions of Challenge Domains

Chess and Go are well-known classic games, both seen as grand challenges of Al (4, 26) that
have driven progress in artificial intelligence since its inception. The achievement of Deep-
Blue beating Kasparov in 1997 is widely regarded to be the first big milestone of Al. Today,
chess playing computer programs remain consistently super-human, and one of the strongest
and most widely-used programs is Stockfish (65). Go emerged as the favorite new challenge
domain, which was particularly difficult for classical search techniques (26). Monte Carlo tree
search (27-29) emerged as the dominant search technique in Go. The best of these programs,
Crazy Stone and Zen, were able to reach the level of 6 dan amateur (3). It was not until 2016
that AlphaGo defeated the first human professional Lee Sedol in the historical 2016 match, and
also defeated the top human Ke Jie in 2017.

Heads-up no-limit Texas hold’em is the most common two-player version of poker played
by humans, which is also played by DeepStack and Libratus (8, 9). Human expert-level poker
has been the standard challenge domain among imperfect information games, inspiring the field
of game theory itself. No-limit Texas hold’em presents the complexity of stochastic events (card
draws), imperfect information (private cards), and a very large state space (66). In this paper,
we use blinds of 100 and 50 chips, and stack sizes of 200 big blinds (20,000 chips).

Scotland Yard is a compelling board game of imperfect information, receiving a Spiel des
Jahres award in 1983 as well as being named the “The most popular game ’83” by Spiel-
Box (67). The game is played on a map of London, where locations are connected by edges
representing different modes of transportation. One player plays as “Mr. X (the evader) and



others control detectives (pursuers). Mr. X is only visible on specific rounds, but detectives get
to see the mode of transportation Mr. X uses every round (e.g. taxi, bus, subway). In order to
win, detectives need to catch Mr. X within 24 rounds. Scotland Yard is a perfect example of
an imperfect information game that requires search for strong play—the detectives have to plan
multiple moves into the future while reasoning about possible locations that Mr. X may be. Sim-
ilarly, though Mr. X has perfect information, he must also reason about where he could be to,
for example, avoid revealing his location. Unlike poker, Scotland Yard has partially-observable
actions, so private information is effected by the agents’ choices in addition to chance.

This suite of games covers the classic challenge domains across game types (perfect infor-
mation and imperfect information, some with stochastic elements and others not), as well as
an additional challenging imperfect information game with substantially longer sequences of
actions and a fundamentally different type of uncertainty over hidden actions.

Results

In order to understand the results, we give a brief high-level overview of our main algorithm,
Student of Games, which we present formally in the [Materials and Methods|section below.

Student of Games: Algorithm Summary

The SOG algorithm trains the agent via sound self-play: each player, when faced with a decision
to make, employs a sound growing-tree CFR (GT-CFR) search equipped with a counterfactual
value-and-policy network (CVPN) to generate a policy for the current state, which is then used
to sample an action to take.

GT-CFR grows a tree, starting with the current public state, and consists of two alternating
phases: the regret update phase runs public tree CFR updates on the current tree; the expansion
phase expands the tree by adding new public states via simulation-based expansion trajectories.
One iteration of GT-CFR consists of one run of the regret update phase followed by one run of
the expansion phase.

The self-play process generates two types of training data for updating the value and policy
networks: search queries, which are public belief states that were queried by the CVPN during
the GT-CFR regret update phase, and full-game trajectories from the self-play games. The
search queries must be solved to compute counterfactual value targets for updating the value
network. The full-game trajectories provide targets for updating the policy network. In practice,
the self-play data generation and training happen in parallel: actors generate the self-play data
(and solve queries) while trainers learn new networks and periodically update the actors.

Theoretical Results

We have two main theoretical results, which we describe here only informally. They are for-
mally treated in [Materials and Methods| Theorem [I| ensures that the exploitability of the final
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GT-CFR policy is at most O(1/+/T), where T' is number of GT-CFR iterations, under some
conditions on how the search tree is expanded and so long as the value function is reasonably
accurate. SOG invokes GT-CFR to re-solve a subtree every time it must act. Thereom 2] bounds
the exploitability of the entire SOG policy proving that it is sound to employ GT-CFR recur-
sively. Both theorems together ensure that the search is sound up to some acceptable error in the
value function. If there is no error in the value function, and the values are the game-theoretic
optimal values, then GT-CFR will provably converge to a Nash equilibrium strategy if run under
the conditions stated in the theorems.

Experimental Results

We evaluate SOG on four games: chess, Go, heads-up no-limit Texas hold’em poker, and Scot-
land Yard. We also evaluate SOG on the commonly-used small benchmark poker game Leduc
hold’em, and a custom-made small Scotland Yard map, where the approximation quality com-
pared to the optimal policy can be computed exactly.

When reporting the results we use the notation SOG(s, ¢) for SOG running GT-CFR with
s total expansion simulations, and ¢ expansion simulations per regret update phase, so the total
number of GT-CFR iterations is then % For example, SOG(8000, 10) refers to 8000 expan-
sion simulations at 10 expansions per regret update (800 GT-CFR iterations). We choose this
notation style to be easily comparable to number of simulations in AlphaZero.

Exploitability in Leduc Poker and Small Scotland Yard Map

Supporting our theoretical results, we empirically evaluate the exploitability of SOG in Leduc
poker (68) and in Scotland Yard on a small map named “glasses”. The full description of Leduc
poker is presented in supplementary text and the map is illustrated in Figure

Exploitability is a function of a specific (fixed) policy profile. However, for a search algo-
rithm like SOG, previous searches may affect policies computed at later points within the same
game, as explained in [Imperfect Information Search, Decomposition, and Re-Solvingl Hence,
we construct multiple samples of the SOG policy by choosing a random seed, running the search
algorithm at every public state in a breadth-first manner such that every search is conditioned
on previous searches at predecessor states, and composing together the policies obtained from
each search. We then show the minimum, average, and maximum exploitabilities over poli-
cies constructed in this way from 50 different choices of seeds. If the minimum and maximum
exploitability values are tight, then they represent an accurate estimate of true exploitability.

Figure |3 shows the exploitability of SOG in Leduc poker and the glasses map of Scotland
Yard, as a function of the number of CVPN training steps. For these graphs, we evaluate
multiple networks (each trained for a different number of steps) generated by a single training
run of SOG(100, 1). Each data point corresponds to a specific network (determined by number
of steps trained) being evaluated under different settings during play. For each specific x-value,
a single network was used to obtain each exploitability value of SOG using the network under
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different evaluation conditions.

We observe that exploitability drops fairly quickly as the training steps increase. Also, even
using only 1 CFR update per simulation, there is significant difference in exploitability when
more simulations are used. As Theorem (I| suggests, more training (by reducing €) and more
search (by increasing 7') reduces the exploitability of SOG. Standard RL algorithms in self-
play are not guaranteed to reduce exploitability with continued training in this setting. We show
this lack of convergence in practice in supplementary text.

Results in Challenge Domains

Our main results compare the performance of SOG to other agents in our challenge domains.
We trained a version of AlphaZero using its original settings in chess and Go, e.g. , using 800
MCTS simulations during training, with 3500 concurrent actors each on a single TPUv4, for a
total of 800k training steps. SOG was trained using a similar amount of TPU resources.

In chess, we evaluated SOG against Stockfish 8 level 20 (65) and AlphaZero. SOG(400, 1)
was run in training for 3M training steps. During evaluation, Stockfish uses various search
controls: number of threads, and time per search. We evaluate AlphaZero and SOG up to
60,000 simulations. A tournament between all of the agents was played at 200 games per pair
of agents (100 games as white, 100 games as black). From this tournament, we rank players
according to their Elo ratings. Elo is a classic system for rating chess players originally designed
by Arpad Elo in 1967 and still widely-used today (69) in many games. A rating, 7, is assigned
to each player 7 such that a logistic model predicts the probability of player ¢ beating player j as
1/(1 4 10(i=7:)/400) " Table [1| shows the relative Elo comparison obtained by this tournament,
where a baseline of 0 is chosen for Stockfish(threads=1, time=0.15s).

In Go, we evaluate SOG(60000, 10) using a similar tournament as in chess, against two
previous Go programs: GnuGo (at its highest level, 10) (70) and Pachi v7.0.0 (71) with 10k and
100k simulations, as well as AlphaZero (6) with a range of search simulations at different points
in training. SOG(400, 1) was used in training for 1M training steps. Table shows the relative
Elo comparison for a subset of the agents that played in this tournament, where a baseline of 0
is chosen for GnuGo. The full results are presented in Tables [S3]and [S4]

Notice in both chess and Go that SOG reaches strong performance. In chess, SOG (60000, 10)
is stronger than Stockfish using 4 threads and one second of search time. In Go, SOG(16000, 10)
is more than 1100 Elo stronger than Pachi with 100,000 simulations. Also, SOG(16000, 10)
wins 0.5% (2/400) of its games against AlphaZero(s=8000,t=800k). As a result, SOG appears
to be performing at the level of top human amateur, possibly even professional level. In both
cases, SOG is weaker than AlphaZero, with the gap being smaller in chess. We hypothesize
that this difference is the result of MCTS being more efficient than CFR on perfect information
games, as the price of SOG’s generality.

For chess and Go, we also present direct Elo comparisons from a tournament between Alp-
haZero (trained for 800k steps) and SOG agents when increasing the number of neural network
evaluations in Figure 4] These results demonstrate that SOG is able to scale, improving perfor-
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mance with available computation. Note that while the neural networks evaluations account for
the majority of the run time, the complexity of the regret update phase is linear in the size of
the tree. The run time is thus quadratic in the number of GT-CFR iterations. The absolute time
cost could be reduced by an implementation that runs the regret update and expansion phase
in parallel. For a more detailed analysis of SOG’s complexity, see [Performance Guarantees for|
|Continual Re-solving] Intuitively, we would expect ¢ = 1 (corresponding to one regret update
per expansion simulation) to be best choice. Due to these computational constraints, we chose
by hand a small number of values for ¢ > 1. Interestingly, we did notice that ¢ = 1 is not always
the best choice in practice and hope to explore this more thoroughly in the future.

In heads-up no-limit Texas hold’em, we evaluate SOG against Slumbot2019 (72, 73), the
best open-source heads-up no-limit computer poker player. When training poker, SOG uses
randomized betting abstractions described in supplementary text to reduce the number of actions
from 20,000 to 4 or 5. SOG(10, 0.01) is trained for up to 1.1M training steps and then evaluated.
Since poker has particularly high variance, we use the Action-Informed Value Assessment Tool
(AIVAT) (74) to compute a more accurate estimate of performance. We also evaluate SOG
against a local best-response (LBR) player that can use only fold and call actions with a poker-
specific heuristic, which has shown to find exploits in previous poker agents (75). Table [2]
summarizes the results of SOG along with other recent poker agents. SOG(10,0.01) wins
on average 7 £ 3 milli big blinds (0.7 chips) per hand, with 95% confidence intervals (3.1M
matches). LBR fails to find an exploit of SOG’s strategy, and SOG wins on average by 434 9
milli big blinds per hand.

In Scotland Yard, the current state-of-the-art agent in this game is based on MCTS with
game-specific heuristic enhancements (42). We call this agent “PimBot” based on its main
author, Joseph Antonius Maria (“Pim”) Nijssen. PimBot implements a variant of MCTS that
uses determinization, heuristic evaluations and playout policies (42, 43). PimBot won 34 out of
50 manually played games against the Nintendo DS Scotland Yard Al

In our experiment SOG is trained up to 17M steps. In evaluation we play a head-to-head
match with SOG(400, 1) against PimBot at different number of simulations per search. The re-
sults are shown in Figure[5] These results show that SOG is winning significantly even against
PimBot with 10M search simulations (55% win rate), compared to SOG searching a tiny frac-
tion of the game. Interestingly PimBot does not seem to play stronger with more search at this
point, as both the 1M and 10M iteration versions have the same performance against SOG.

As in chess and Go, SOG also demonstrates strong performance in these complex imperfect
information games. In the case of poker, in addition to beating Slumbot it also beats the lo-
cal best-response agent which was not possible for some previous agents (including Slumbot).
Finally, SOG significantly beats the state-of-the-art agent in Scotland Yard, an imperfect infor-
mation game with longer episodes and fundamentally different kind of imperfect information
than in poker. Together, these results indicate that SOG is capable of strong performance across
four games, two fundamentally different game types, and can act as a truly unified algorithm
combining search, learning, and game-theoretic reasoning for competitive games.
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Discussion

Student of Games (SOG) is a unified algorithm that combines search, learning, and game-
theoretic reasoning. SOG is comprised of two main components: a growing-tree counterfac-
tual regret minimization (GT-CFR) technique, and sound self-play which learns counterfactual
value-and-policy networks via self-play. Most notably, SOG is a sound algorithm for both per-
fect and imperfect information games: as computational resources increase, SOG is guaranteed
to produce better approximation of minimax-optimal strategies. This finding is also verified em-
pirically in Leduc poker, where additional search leads to test-time approximation refinement,
unlike any pure reinforcement learning algorithms that do not use search.

In addition to being sound, SOG also demonstrates strong performance on challenge do-
mains, using minimal domain knowledge. In the perfect information games of chess and Go,
SOG performs at the level of human experts or professionals, but can be substantially weaker
in head-to-head play than specialized algorithms for this class of games, like AlphaZero, when
given the same resources. In the imperfect information game no-limit Texas hold’em poker,
SOG beats Slumbot, the best openly available poker agent, and is shown not to be exploited by
a local best-response agent using poker-specific heuristics. In Scotland Yard, SOG defeats the
state-of-the-art agent.

There are some limitations of SOG that are worth investigating in future work. First, the use
of betting abstractions in poker could be removed in favor of a general action-reduction policy
for large action spaces. Second, SOG currently requires enumerating the information states per
public state, which can be prohibitively expensive in some games; this might be approximated
by a generative model that samples world states and operates on the sampled subset. Finally,
substantial computational resources are used to attain strong play in challenge domains; an
interesting question is whether this level of play is achievable with less computational resources.

Materials and Methods

We now give a detailed description of the Student of Games algorithm. As SOG has several
components, we describe them each individually first, and then describe how they are all com-
bined toward the end of the section. For clarity, many of the details (including full pseudocode)
are presented in supplementary text.

Counterfactual Value-and-Policy Networks

The first major component of SOG is a counterfactual value-and-policy network (CVPN) with
parameters 6, depicted in Figure [f] These parameters represent a function fo(3) = (v,p),
where outputs v are counterfactual values (one per information state per player), and prior
policies p, one per information state for the acting player, in the public state s,,,(h) at some
history of play h.
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In our experiments, we use standard feed-forward networks and residual networks. The
details of the architecture are described in supplementary text.

Search via Growing-Tree CFR

Growing-tree CFR (GT-CFR) is an algorithm that runs a CFR variant on a public game tree that
is incrementally grown over time. GT-CFR starts with an initial tree, £°, containing /3 and all
of its child public states. Then each iteration, ¢, of GT-CFR consists of two phases:

1. The regret update phase runs several public tree CFR updates on the current tree L.

2. The expansion phase expands £' by adding new public states via simulation-based ex-
pansion trajectories, producing a new larger tree £

When reporting the results we use the notation SOG(s, ¢) for SOG running GT-CFR with s
total expansion simulations, and ¢ expansion simulations per regret update phase, so the total
number of GT-CFR iterations is then % The ¢ can be fractional, so e.g. 0.1 indicates a new
node every 10 regret update phases. Figure [/| depicts the whole GT-CFR cycle. We chose this
specific notation to directly compare total expansion simulations, s, to AlphaZero.

The regret update phase runs {ﬂ updates (iterations) of public tree CFR on £ using simul-
taneous updates, regret-matching™, and linearly-weighted policy averaging (33). At public tree
leaf nodes, a query is made to the CVPN at belief state 5, whose values fo(5') = (v, p) are
used as estimates of counterfactual values for the public subgame rooted at 3.

In the expansion phase, new public tree nodes are added to £. Search statistics, initially
empty, are maintained over information states s;, accumulated over all expansion phases within
the same search. At the start of each simulation, an information state s; is sampled from the
beliefs in [.o. Then, a world state w;o is sampled from s;, with associated history Aye.
Actions are selected according to a mixed policy that takes into account learned values (via
mpuct(si(h))) as well as the currently active policy (7cgr(s;(h))) from search: Tgeci(s;(h)) =
tmpucr(si(h)) + smcrr(si(h)). The first policy is determined by PUCT (3) using counterfactual
values v;(s;, a) normalized by the sum of the opponent’s reach probability at s; to resemble
state-conditional action values, and the prior policy p obtained from the queries. The second
is simply CFR’s average policy at s;(h). As soon as the simulation encounters an information
state s; € Spup such that sy, & £, the simulation ends, s, is added to £, and visit counts are
updated along nodes visited during the trajectory. Similarly to AlphaZero (6), virtual losses (76)
are added to the PUCT statistics when doing [¢| simulations inside one GT-CFR iteration.

AlphaZero always expands a single action/node at the end of the iteration (the action with
the highest UCB score). Optimal policies in perfect information games can be deterministic, and
expanding a single action/node is a good way to avoid unneeded computation after unpromising
actions. MCTS methods are sound as long as the best action has been added, which is always
true in the limit as the tree is completely filled out. In imperfect information games, optimal
policies might be stochastic, having non-zero probability over multiple actions. Rather than
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expanding a single action, SOG thus expands the top £ actions as ranked by the prior. We use
k = 1 for perfect information games, where computation cost is very important and we only
need to find a single good action, and k£ = oo to add all children for imperfect information
games where it is important to mix over multiple actions. In addition to being sound in the
limit, SOG also has a finite-time guarantee on policy quality when k = oc.

Modified Continual Re-solving

The continual re-solving method used by DeepStack (8) takes advantage of a few poker proper-
ties, which are not found in other games like Scotland Yard, so we use a more general re-solving
method that can be applied to a broader class of games. Recall that the re-solving step and the
corresponding auxiliary game requires i) the current player’s range ii) the opponent’s coun-
terfactual values. This provides a succinct and sufficient representation to safely re-solve the
subgame rooted in a public state s,,;. In hold’em poker, players generally take turns making
actions, and a depth-limited search tree for a re-solving auxiliary game can always be deep
enough to contain a state for the opponent’s action. All player actions are fully visible to both
players, so the opponent’s maximum counterfactual value in the previous search tree can be
used for the next re-solving auxiliary game, no matter what opponent action we are responding
to. By working within the single, fixed domain of poker, these properties let DeepStack and
Libratus simply retrieve the re-solving summary information from its previous search.

As SOG is a general algorithm, it can no longer leverage this special case. The current public
state spy, might not have been included in the previous search tree, so the prior computation
might not directly provide us with the required summary information for re-solving the subgame
rooted in sp,,. SOG thus starts its re-solving process in the state closest to the current state that
is included in the previous search tree: s} ;°. We initialize the search tree with a single branch
leading from s} to spu, With all off-branch actions being leaves. The search tree is then
expanded forward from sy, as in DeepStack or Libratus. This re-solving auxiliary game uses
summary information for sp ;" instead of sy, and by construction these values and probabilities
are available in the previous search tree.

When generating a policy for this next re-solving auxiliary game with GT-CFR, we constrain
the expansion phase of GT-CFR to only grow the tree under sy, to focus the computation on
the states relevant for the current decision. After re-solving, our action probabilities for our
current information state will still come from the new re-solved policy at s,.,, which might not
be at the root of the search tree.

Finally, like DeepStack, the gadget for the re-solving auxiliary game is modified by mixing
in the opponent’s range from the previous search. As introduced in (36), the gadget used to
transform a subgame into a re-solving auxiliary game is a binary opponent decision for each
opponent information state before the subgame. At each information state, the opponent can
either terminate (T) and receive the opponent counterfactual values in the re-solving summary,
or follow (F) this line of play into the corresponding subgame. The effect of the gadget is
to generate an opponent range r for the subgame. Given an opponent range 7 from the
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previous search, (8) modified the opponent range to be ar + (1 — a)rP™®'. As with DeepStack,
this regularization towards the previous opponent policy empirically improves the performance,
and we used a = 0.5.

Performance Guarantees for Continual Re-solving

Growing the tree in GT-CFR allows the search to selectively focus on parts of the space that are
important for local decisions. Starting with a small tree and adding nodes over time does not
have an additional cost in terms of convergence:

Theorem 1. Let L' be the public tree at time t. Assume public states are never removed from
the search tree, so L' C LY. For any given tree L, let N'(L) be the interior of the tree: all non-
leaf, non-terminal public states where GT-CFR generates a policy. Let F (L) be the frontier of
L, containing the non-terminal leaves where GT-CFR uses e-noisy estimates of counterfactual
values. Let U be the maximum difference in counterfactual value between any two strategies,
at any information state, and A be the maximum number of actions at any information state.
Then, the regret at iteration T' for player i is bounded:

T /AT
RiTJull < Z |}~(£t)‘€ + Z |Si(8pub)‘U AT
t=1

Spub EN(LT)

The regret R7™!" in Theorem[l]is the gap in performance between GT-CFR iterations and the
highest-value strategy. Theorem|I|shows that the average policy returned by GT-CFR converges
towards a Nash equilibrium at a rate of 1/ VT, but with some minimum exploitability due to
e-error in the value function. There is also no additional cost when using GT-CFR as the game-
solving algorithm for each re-solving search step in continual re-solving:

Theorem 2. Assume we have played a game using continual re-solving, with one initial solve
and D re-solving steps. Each solving or re-solving step finds an approximate Nash equilib-
rium through T iterations of GT-CFR using an e-noisy value function, public states are never
removed from the search tree, the maximum interior size Zspube nery [Si(spub)| of the tree is
always bounded by N, the frontier size of the tree is always bounded by F, the maximum
number of actions at any information states is A, and the maximum difference in values be-
tween any two strategies is U. The exploitability of the final strategy is then bounded by

(5D +2) (Fc v NU\@).

Theorem [2] is similar to Theorem 1 of (8), adapted to GT-CFR and using a more detailed
error model which can more accurately describe value functions trained on approximate equi-
librium strategies. It shows that continual re-solving with GT-CFR has the general properties we
might desire: exploitability decreases with more computation time and decreasing value func-
tion error, and only increases linearly with game length. Proofs of these theorems are presented
as supplementary text.
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The computational complexity of a GT-CFR re-solving step with 7" iterations expanding k
children is O(kT?) public states visited and CVPN network calls. In the special case of perfect
information games, the number of network calls can be reduced to O(T"). At every iteration ¢,
in the expansion phase GT-CFR will traverse a single trajectory through the tree to expand a
leaf, and use the CVPN to evaluate the newly expanded children. This requires k network calls,
and a worst case of |L!| states visited or [log, | £!|] states visited in a balanced b-ary tree. In the
regret update phase, GT-CFR visits every state in £' and uses the CVPN to evaluate every leaf
of the tree. Because k child states are added to the tree at each iteration, |£'| < O(kt), giving
the stated bounds.

In perfect information games, £k = 1, each player range is a single number, and we only
need to evaluate a state once because the optimal policy does not depend on the player ranges.
If a state is evaluated once with a range of 1 for both players and then stored, any other belief
state can by evaluated by scaling the stored result by the opponent’s ranges.

Data Generation via Sound Self-play

Student of Games generates episodes of data in self-play by running searches at each decision
point. Each episode starts at the initial history h( corresponding to the start of the game, and
produces a sequence of histories (ho, hy,---). At time ¢, the agent runs a local search and then
selects an action a,, and the next history A, is obtained from the environment by taking action
a; at hy. Data for training the CVPN is collected via resulting trajectories and the individual
searches.

When generating data for training the CVPN, it is important that searches performed at dif-
ferent public states be consistent with both the CVPN represented by 6 and with searches made
at previous public states along the same trajectory (e.g. two searches should not be computing
parts of two different optimal policies). This is a critical requirement for sound search (8, 20, 36),
and we refer to the process of a sound search algorithm generating data in self-play as sound
self-play. To achieve sound self-play, searches performed during data generation run GT-CFR
on the modified safe re-solving auxiliary game (as described in[Modified Continual Re-solving)).

Training Process

The quality of the policies produced by GT-CFR and data generated by sound self-play depends
critically on the values returned by the CVPN. Hence, it is important for the estimates to be
accurate in order to produce high-performance searches and generate high-quality data. In this
subsection, we describe the procedure we use to train the CVPN. The process is summarized in

Figure [§]

Query Collection

As described in [Search via Growing-Tree CFR| and |Data Generation via Sound Self-playl
episodes are generated by each player running searches of GT-CFR from the current public
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state. Each search produces a number of network queries from public tree leaf nodes [ (de-
picted as pink nodes in Figure [§).

The training process improves the CVPN via supervised learning. Values are trained using
Huber loss (77) based on value targets and the policy loss is cross entropy with respect to a
target policy. Value and policy targets are added to a sliding window data set of training data
that is used to train the CVPN concurrently. The CVPN is updated asynchronously on the actors
during training.

Computing Training Targets

Policy targets are assembled from the searches started at public states along the main line of
episodes (the histories reached in self-play) generated by sound self-play described in
|Generation via Sound Self-playl Specifically, they are the output policies for all information
states within the root public state, computed in the regret update phase of GT-CFR.

Value targets are obtained in two different ways. Firstly, the outcome of the game is used as
a (TD(1)) value target for states along the main line of episodes generated by sound self-play.
Secondly, value targets are also obtained by bootstrapping: running an instance of GT-CFR
from subgames rooted at input queries. In principle, any solver could be used because any
subgame rooted at 3 has well-defined values. Thus, this step acts much like a policy improve-
ment operator via decomposition described in [Imperfect Information Search, Decomposition,|
land Re-Solving]l Specifically, the value targets are the final counterfactual values after 7 itera-
tions of GT-CFR for all the information states within the public state that initiated the search.
The specific way that the different value targets are assigned is described by the pseudocode in
supplementary text and determined by a hyperparameter noted in Table [S2]

Recursive Queries

While the solver is computing targets for a query, it is also generating more queries itself by
running GT-CFR. Some of these recursive queries are also added to the buffer for future solving,
so that the CVPN can produce reasonable answers for all leaves in a search, not just those on
the self-play lines. As a result, at any given time the buffer may include queries generated by
search in the main self-play game or by solver-generated queries off the main line. To ensure
that the buffer is not dominated by recursive queries, we set the probability of adding a new
recursive query to less than 1 (in our experiments, the value is typically 0.1 or 0.2; see Table
for the exact values).

Consistency of Training Process

One natural question is whether, or under what circumstances, the training process could ensure
convergence to the optimal values? The answer is positive: the training process converges to
the optimal values, asymptotically, as 7' — oo and with very large (exponential) memory.
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Informally, imagine an oracle function f(/3) that can simply memorize the values and policy
for the particular (3 similar to a tabular value or policy iteration algorithm except with continuous
keys. For any subgame rooted at some (3 with a depth of 1 (every action leads to terminal states),
the values and policies can be computed and stored for [ after 1" iterations of the solver. This can
then be applied inductively: since CFR is deterministic, for any subgame on the first iteration
of GT-CFR, a finite number of queries will be generated. Each of these queries will be solved
using GT-CFR. Eventually, the query will be a specific one that is one step from the terminal
state whose values can be computed exactly and stored in f(3). As this value was generated
in self-play or by a query solver, and CFR is deterministic, it will produce another self-play
game with the identical query, except it will load the solved value from f(3), and inductively
the values will get propagated from the bottom up. Since CFR is deterministic and 7' is finite,
these ensure that the memory requirement is not infinite despite the continuous-valued keys.
Practically, the success of the training process will depend on the representational capacity and
training efficacy of the function approximation (i.e. neural network architecture).

For a fully-detailed description of the algorithm, including hyperparameter values and spe-
cific descriptions of each process described above, see supplementary text.
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Figure 1: An example structure of public belief state 5 = (spup, 7). Spub translates to two sets
of information states, one for player 1, S1(spw) = {50, 51}, and one for player 2, Sy(Spuy) =
{so, 51, $2}. Each information state includes different partitions of possible histories. Finally r
contains reach probabilities for information states for both players.
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Depth 0

Depth 1

Depth 2

Subgame 1

Figure 2: An example of depth-limited CFR solving using decomposition in a game
with two specific subgames shown. Standard CFR would require traversing all the sub-
games. Depth-limited CFR decomposes the solve into running down to depth d = 2 and using
v = vg(f) to represent the second subgame’s values. On the downward pass, ranges r are
formed from policy reach probabilities. Values are passed back up to tabulate accumulating re-
grets. Re-solving a subgame would require construction of an auxiliary game (36) (not shown).
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Figure 3: Exploitability of SOG as a function of the number of training steps under dif-
ferent number of simulations of GT-CFR. For both (A) Leduc poker and (B) Scotland Yard
(glasses map), each line corresponds to a different evaluation condition, e.g. SOG(s, c¢) used at
evaluation time. The ribbon shows minimum and maximum exploitability out of 50 seeded runs
for each setup. The units of the y-axis in Leduc poker are milli big blinds per hand (mbb/h),
which corresponds to one thousandth of a chip in Leduc. In Scotland Yard the reward is either
-1 (loss) or +1 (win). All networks were trained using a single training run of SOG(100, 1), and
the x-values correspond to a network trained for the corresponding number of steps.
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Chess Agents Rel. Elo Go Agents Rel. Elo

AlphaZero(sims=60k) +592 AlphaZero(s=16k, t=800k) +3139
Stockfish(threads=16, time=4s) +530 AlphaZero(s=8k, t=800k) +2875
AlphaZero(sims=8k) +455 SoG(s=16k, c=10) +1970
SoG(s=60k, c=10) +420 SoG(s=8k, c=10) +1902
Stockfish(threads=4, time=1s) +382 Pachi(s=100k) +869
SoG(s=8Kk, c¢=10) +268 Pachi(s=10k) +231
Stockfish(threads=1, time=0.1s) 0 GnuGo(1=10) 0

Table 1: Relative Elo of different agents in chess (left), and Go (right). Each agent played
200 matches (100 as white and 100 as black) against every other agent in the tournament. For
chess, Elo of Stockfish with a single thread and 100ms thinking time was set to be 0. For Go,
Elo of GnuGo was set to be 0. The other values are relative to those. AlphaZero(s=16k, t=800k)
refers to 16000 search simulations. For full results, see Tables and
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Figure 4: Scalability of SOG with increasing number of neural network evaluations com-
pared to AlphaZero measured on relative Elo scale. The x-axis corresponds to the number
of simulations in AlphaZero and s in SOG(s, ¢). Elo of SOG(s = 800, ¢) was set to be 0. In
chess (A), ¢ = 10 for all runs, with varying s € {800, 2400, 7200, 21600, 64800}. In Go (B),
we graph SOG using (s, ¢) € {(800, 1), (2000, 10), (4000, 10), (8000, 10), (16000, 16).}
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Agent Name Slumbot LBR (75)
Slumbot (2016) - -522 £ 50
ARMAC (55) - -460 =+ 260
DeepStack (8) - 428 £ 87
Modicum (39) 11+£5 -
ReBeL (37) 45+ 5 -
Supremus (38) | 176 £44 951 + 96
S0G(10,0.01) 7+3 434 +9

Table 2: Head-to-head results showing ex-
pected winnings (mbb/h) of SOG and other
recently published agents against Slumbot
and LBR. The LBR agent use either fold or
call (FC) actions in the all four rounds. The
4 shows one standard error. LBR results for
Slumbot are from (75). The other results are
from the papers describing the agents.

100 +
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80 1

70 1

60 A

SoG's win rate against PimBot

100 102 10°  10* 105  10° 107

PimBot's search iterations
Figure 5: Win rate of S0G(400,1)
against PimBot with varying simula-
tions. 2000 matches were played for each
data point, with roles swapped for half of
the matches. Note that the x-axis has loga-
rithmic scale. The ribbon shows 95% con-
fidence interval.
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Figure 6: A counterfactual value-and-policy network (CVPN). Each query, f3, to the network
includes beliefs 7 and an encoding of sy, to get the counterfactual values v for both players
and policies p for the acting player in each information state s; € syu(h), producing outputs
fo. Since players may have different actions spaces (as in e.g. Scotland Yard) there are two sets
of policy outputs: one for each player, and p refers to the one for the acting player at s, only
(depicted as player 1 in this diagram by greying out player 2’s policy output).
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Figure 7: Overview of the phases in one iteration of Growing-Tree CFR. The regret update
phase propagates beliefs down the tree, obtains counterfactual values from the CPVN at leaf
nodes (or from the environment at terminals), and passes back counterfactual values to apply the
CFR update. The expansion phase simulates a trajectory from the root to a leaf, adding public
states to the tree. In this case the trajectory starts in the public belief state s, by sampling the
information state sq. After that the sampled action a, leads to the information state s in public

state sgub, and finally the action a; leads to a new public state that is added to the tree.
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Figure 8: SOG Training Process. Actors collect data via sound self-play and trainers run
separately over a distributed network. (A) Each search produces a number of CVPN queries
with input 5. (B) Queries are added to a query buffer and subsequently solved by a solver
that studies the situation more closely via another invocation of GT-CFR. During solving, new
recursive queries might be added back to the query buffer; separately the network is (C) trained

on minibatches sampled from the replay buffer to predict values and policy targets computed
by the solver.
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Supplementary Text

Student of Games Algorithm Details

Network Architecture and Optimization

Table [S1| lists neural network architectures and input features used for each game. For chess
and Go we use exactly the same architecture and inputs as used by AlphaZero (6). In poker and
Scotland Yard we process concatenated belief and public state features by a MLP with ReLU
activations.

The counterfactual value head is optimized by Huber loss (77), while policy for each infor-
mation state ¢ is optimized by KL divergence:

Z(V, P; Viarget, ptarget) = Wy * lhuber (V, Vtarget) + Wy * Z ZKL(T[_i? Wzarget)
i
where each head is weighted with the corresponding weight w,, and w,,. During training we
smoothly decay the learning rate by a factor of d every Tjeq, steps. Formally learning rate o at
training step ¢ is defined as:

p = Qg % d/ Tecew

When using the policy head’s prediction as prior in PUCT formula the logits are processed
with softmax with temperature 75,,,,-. This can decrease weight of the prior in some games and
encourage more exploration in the search phase.

Pseudocode

Here we provide pseudocode for the most important parts of the SOG algorithm. Algorithm
specifies GT-CFR, the core of SOG’s sound game-theoretic search that scales to large perfect
information games introduced in[Search via Growing-Tree CFR] Algorithm 2] presents how GT-
CFR is used during self-play that generates training examples for the neural network, previously
covered in[Iraining Process, Hyperparameters used in self-play are specified in Table

When SOG plays against an opponent, the search tree is rebuilt also for the opponent’s
actions (as discussed in [Modified Continual Re-solving). This way, SOG reasons about the
opponent’s behavior since it directly influences the belief distribution for the current state (3
where SOG is to act.

Note that unlike AlphaZero, SOG currently starts its search procedure from scratch. That
is, the previous computation only provides invariants for the next resolving step. AlphaZero
rather warm-starts the MCTS process by initializing values and visit counts from the previous
search. For SOG, this would also require warm-starting CFR. While possible (78), there is no
warm-starting in the current implementation of SOG.
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Algorithm 1 Growing Tree CFR. Note that GT-CFR is logging all neural net queries it does
since they might be used later in training.

procedure GT-CFR(L°, 3, s, ¢)

> L% — a tree including (3 built as described in [Modified Continual Re-solving]

> 3 — a public belief state under which the new nodes will be added.

> s,c¢ — total number of expansion simulations and number of simulations per CFR
update.

fori € {0,1,--- ,[57]—1}d0
CFR(L%, [1]) > Store average policy and counterfactual values in the tree.
L+ GROW(LY)

end for

> Return counterfactual values and average policy from CFR and all NN calls.
return v, p, nn_queries
end procedure

procedure GROW(L, 3)
fori e {0,1,---,[c] — 1} do
path < SAMPLEPATHDOWNTHETREE(L, 3) > The path starts at 3.
ADDTOPKCHILDREN(L, path, k)
UPDATEVISITCOUNTSUP(L, path)
end for
return £
end procedure
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Algorithm 2 Sound Self-play

procedure SELFPLAY
Get initial history state w <— w and corresponding public state (3
> Decide whether the game has to be played till the end.
do_not_resign < coin flip with probability p,.; resign
while w is not terminal AND played less than moves,,,, do
if chance acts in w then
a < uniform random action.
else
> SOG acts for all non-chance players.
Uy, Tl SOGSELFPLAY CONTROLLER (w)
if v, < resign_threshold AND not(do_not_resign) then
> Don’t waste compute on already decided game.
return
end if

INIT

> Mix controller’s policy with uniform prior to encourage exploration.

,n_ijelfplay «— (1 _ 6) i quontroller te- 71_um'form
if moves played < movesg cedy o frer then
a < sample action from r3l/play
else
a < arg max iel/play
end if
end if
w <— apply action a on state w
end while
> Sampling states with TD(1) targets.
for each belief state 5 € played trajectory tr do
if uniform random sample from unit interval < p;;; then
v < outcome of ¢r assigned to information state visited in 3
p < policy used in 3
replay _buffer.append((5, (v, p)))
end if
end for
end procedure
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procedure SOGSELFPLAY CONTROLLER(w)
B < public state including w
L < the tree including /3 built as described in[Modified Continual Re-solving|
v, p < TRAINING-GT-CFR(L)
return v(w), p(w)
end procedure

procedure TRAINING-GT-CFR(L)
v, p, nn_queries < GT-CFR(L)
queries <— Pick on average ¢s.q., neural net queries /3 from nn_queries.
queries_to_solve.extend(queries)
return v, p
end procedure

procedure QUERYSOLVER
for 3 < queries_to_solve.pop() do
v, p, nn_queries < GT-CFR(p)
> Send the example to the trainer.
replay_buffer.append((53, (v, p)))
> Create recursive queries.
queries <— Pick on average ¢,ccursive N€Ural net queries 5 from nn_queries.
queries_to_solve.extend(queries)
end for
end procedure
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Implementation

S0OG is implemented as a distributed system with decoupled actor and trainer jobs. Each actor
runs several parallel games and the neural network evaluations are batched for better accelerator
utilization. The networks were implemented using TensorFlow.

Poker Betting Abstraction

There are up to 20000 possible actions in no-limit Texas hold’em. To make the problem easier,
Al agents are typically allowed to use only a small subset of these (8, 37—39). This process of
selecting a set of allowed actions for a given poker state is called betting abstraction. Even using
betting abstraction the players are able to maintain strong performance in the full game (8, 37,
38). Moreover, the local best response evaluation (75) suggests that there is not an easy exploit
for such simplification as long as the agent is able to see full opponent actions (8).

We use a betting abstraction in the Student of Games to speed up the training and simplify
the learning task. Our agent’s action set was limited to just 3 actions: fold (give up), check/call
(match the current wager) and bet/raise (add chips to the pot). To improve generalization we
used stochastic betting size similarly to ReBeL (37). The single allowed bet/raise size is ran-
domly uniformly selected at the start of each poker hand from the interval (0.5, 1.0) x pot_size.
This amount is anecdotally similar to one used by human players and had good performance in
our experiments. The same random selection was used in both training and evaluation.

As in (37), we have also randomly varied the stack size (number of chips available to the
players) at the start of the each round during the training. This number stays fixed during
evaluation.

Evaluation Details and Additional Experimental Results

Description of Leduc poker

Leduc is a simplified poker game with two rounds and a 6-card deck in two suits. Each player
initially antes a single chip to play and obtains a single private card and there are three actions:
fold, call and raise. There is a fixed bet amount of 2 chips in the first round and 4 chips in the
second round, and a limit of two raises per round. After the first round, a single public card
is revealed. A pair is the best hand, otherwise hands are ordered by their high card (suit is
irrelevant). A player’s reward is their gain or loss in chips after the game.

Reinforcement Iearning and Search in Imperfect Information Games

In this section, we provide some experimental results showing that common RL and widely-
used search algorithms can produce highly exploitable strategies, even in small imperfect in-
formation games where exploitability is computable exactly. In particular, we show how ex-
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ploitable Information Set Monte Carlo Tree Search is in Leduc poker, as well as three standard
RL algorithms (DQN, A2C and tabular Q-learning) in both Kuhn poker and Leduc poker using
OpenSpiel (79). Results are presented in milli big blinds per hand (mbb/h), which corresponds
to one thousandth of a chip for both games.

Information Set Monte Carlo Tree Search

Information Set Monte Carlo Tree Search (IS-MCTS) is a search method that, at the start of
each simulation, first samples a world state— consistent with the player’s information state— and
uses it for the simulation (40). Reward and visit count statistics are aggregated over information
states so that players base their decisions only on their information states rather than on private
information inaccessible to them.

Table [S5| shows the exploitability of a policy obtained by running separate independent IS-
MCTS searches from each information state in the game, over various parameter values. The
lowest exploitability of IS-MCTS we found among this sweep was 465 mbb/h.

Standard RL algorithms in Imperfect Information Games

As imperfect information games generally need stochastic policies to achieve an optimal strat-
egy, one might wonder how exploitable standard RL algorithms are in this class of games. To
test this, we trained three standard RL agents: DQN, policy gradient (A2C) and tabular Q-
learning. We used MLP neural networks in DQN and A2C agents. Table [S6|shows the hyper
parameters we swept over to train these RL agents.

In Kuhn poker, the best performing A2C agent converges to exploitability of 52 mbb/h, and
tabular Q-learning and DQN agents converge to around 250 mbb/h. Similarly, in Leduc poker,
the best performing A2C agent converges to exploitability of 78 mbb/h, tabular Q-learning and
DQN agents converge to about 1300 mbb/h and 900 mbb/h respectively. Figure [S4]shows the
exploitability of RL agents in Kuhn poker and Leduc poker.

Proofs of Theorems

There are three substantive differences between the SOG algorithm and DeepStack. First, SOG
uses a growing search tree, rather than using a fixed limited-lookahead tree. Second, the SOG
search tree may depend on the observed chance events. Finally, SOG uses a continuous self-
play training loop operating throughout the entire game, rather than the stratified bottom-up
training process used by DeepStack. We address each of these differences below, in turn, after
considering how to describe an approximate value function for search in imperfect information
games.
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Value Functions for Subgames

Like DeepStack, the SOG algorithm uses a value function, so the quality of its play depends on
the quality of the value function. We will describe a value function in terms of its distance to a
strategy with low regret. We start with some value and regret definitions that are better suited
to subgames.

Consider some policy profile 7 which is a tuple containing a strategy for each player, public
tree subgame S rooted at public state s, With player ranges B;[s; € S;(spu)] = P;(s;|m). First,
note that we can re-write counterfactual value v so that it depends only on B and 7 restricted to
S, with no further dependence on 7. Let s; be a Player ¢ information state in Si(spub), and ¢ be
the opponent of Player 7, then:

BT (i) = DD Balsg(W)Peh) P (2], 7 uy(2)

he](si) z2h

— Z ZP,i(h]w)P(z\h,W)ui(z) =" (s;)

hel(s;) z3h
We can write several quantities in terms of the best-response value at information state s;:

BVB™® (57) = max UB’”S“’T;(si)

s

where 7 < 7’ is the policy profile constructed by replacing action probabilities in 7 with those
in 7. The value function is a substitute for an entire subgame policy profile, so the regret we
are interested in is player ¢’s full counterfactual regret (37) at s;, which considers all possible
strategies within subgame 5"

(1)
With these definitions in hand, we can now consider the quality of a value function f in
terms of a regret bound e and value error £. Recall that f maps ranges B and public state s
to approximate counterfactual values 7 (s;) for each player i.
First, we consider versions of the regret bound and value error which are parameterised by
a strategy 7. There is some associated bound ¢(7) on the sum of regrets across all information
states at any subgame, valid for both players.

Ri‘;"(B, 7TS) = BVB’”S(si) — BT

() = max max max Z RM(B, )
B Spub (2 v
51€Si(Spub)
There is also some bound () on the distance between f (spub, B) and the best-response values
to 7.
() = mpxmax max Y [f(spu B)ls] — 077 (s)

B Spub )
5;€Si(spub)
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We then say that f has €, quality bounds if there exists some strategy 7 such that e(7) < e
and £¢(m) < . As desired, if both € and £ are low then f(spu, B) is a good approximation of
the best-response values to a low-regret strategy, for a subgame rooted at s, with initial beliefs
B.

The DeepStack algorithm (&) used a similar error metric for value functions, but only con-
sidered zero-regret strategies. We introduce a more complicated error measure because the
space of values corresponding to low-regret strategies may be much larger than the space of
values corresponding to no-regret strategies. For example, consider the public subgame of a
matching pennies game after the first player acts with the policy 0.501 heads, 0.499 tails. There
are two first-player information states, from playing either heads or tails, with an empty first-
player strategy as there are no further first player actions. Let us assume a value function f is
returning the values [0 0] for these two information states. How good is f, assuming we restrict
our attention to this one subgame?

The unique zero-regret strategy for the second player is to play tails 100% of the time,
resulting in first player counterfactual values of -1 for playing heads and 1 for playing tails. The
error metric based on zero-regret strategies is therefore measuring | f([0.501 0.499]) — [—1 1]|4,
so that the DeepStack metric states that f has an error of 2. However, [0 0] seems like a very
reasonable choice: these are exactly the first player counterfactual values when the second
player has a strategy of 0.5 heads, 0.5 tails, which has a regret of only 0.002 in this subgame.
Rather than saying f is a poor quality value function with an error of 2 in a game with utilities in
[—1, 1], we can now say f is a great 0.002, 0 value function which exactly describes a low-regret
strategy.

The new quality metric also addresses an issue the old DeepStack metric had with disconti-
nuities in the underlying O-regret value functions. This means that the space of functions with
a low DeepStack error metric may not be well suited for learning from data. Continuing with
the previous example, if we shifted B slightly to be 0.499 heads and 0.501 tails for the first
player, the unique O-regret strategy in the subgame flips to playing tails 0% of the time, while
the uniform random strategy is still a low-regret strategy for this subgame. In this example, a
function can only have a low error with the DeepStack metric if it accurately predicts the val-
ues everywhere around the discontinuity at 0.5 heads and 0.5 tails, whereas the new metric can
avoid this discontinuity by picking an € > (. More generally, for any constant ¢, the objective
€ + ¢ is a continuous function in B, making it a potentially more attractive learning target
than the discontinuous function defined by exact Nash equilibrium values, and which matches
a learning procedure based on approximately solving example subgames.

Growing Trees

One major step in showing soundness of the SOG algorithm is demonstrating that Growing
Tree CFR (GT-CFR) can approximately solve games. As a quick recap, GT-CFR is a variant
of the CFR algorithm (3/) that uses limited lookahead and a value function, storing values
within a tree that grows over time, in a fashion similar to UCT (27). We use this algorithm as a
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component to solve the problems that the SOG algorithm sets up. At every non-terminal public
leaf state sy, Of the lookahead tree, GT-CFR uses estimated counterfactual values v, generated
from a value function f(syuw, 3) with player ranges B induced by Bayes’ rule at s, for the
current policy profile 7.

Like DeepStack, SOG has two steps which involve solving subgames of the original game.
One of the steps is the re-solving step used to play through a game, where we solve a mod-
ified subgame based on constraints on opponent values and beliefs about our possible private
information, in order to get our policy and new opponent values. The other step is only in the
training loop, where we are solving a subgame with fixed beliefs for both players, in order to
get values for both players. While the (sub)games for these two cases are slightly different, they
are both well-formed games and we can find an approximate Nash equilibrium using GT-CFR.

When running GT-CFR, even though a policy is explicitly defined only at information states
in the lookahead tree L, at each iteration ¢ there is implicitly some complete policy profile
7', For any information state s in £ which is not a leaf, 7’(s) is explicitly defined by the
regret-matching policy. For all other s — either a leaf of £ or outside of the lookahead tree —
7! (s) is defined by the e-regret subgame policy profile 7 associated with the value function’s
€, & quality bounds. Note that this ¥ only exists as a concept which is useful for theoretical
analysis: GT-CFR does not have access to the probabilities outside of its lookahead tree, only a
noisy estimate of the associated counterfactual values provided by the value function.

Lemma 1. Let p and q be vectors in [0, 1], and v and w be vectors in R" such that v[i] > wi]
foralli. Thenp-v—q-w<1-(V—w)+p-w—q W

Proof.

=p-(v-w)+p-w—q'Ww
<1l-(v—-w)+p-w—q-w

]

Lemma 2. Let p and q be vectors in [0, 1]", and v and w be vectors in R" such thaty ;. |v[i]—
wiil| <& Then (p—q)-v<{+(p—q) - w.
Proof.

P-q)v=(pp—q) (Vv-w)+(p—q)-w

< Z ((pli] = ali)(v[i] = wli))[ + (p—aq) - W

< Z|(V[i] —wli)|+(p—q)-w

<{+(p—q)w
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]

In GT-CFR, the depth-limited public tree used for search may change at each iteration.
Let £' be the public tree at time ¢. For any given tree £, let A'(£) be the interior of the
tree: all non-leaf, non-terminal public states. The interior of the tree is where regret matching
is used to generate a policy, with regrets stored for all information states in interior public
states. Let F (L) be the frontier of £, containing non-terminal leaves, and Z (L) be the terminal
public states. GT-CFR uses the value function at all public states in the frontier, receiving noisy
estimates ©(s) of the true counterfactual values v(s). We will distinguish between the true
regrets RT computed from the entire policy, and the regret RST computed using the estimated
values 0(s). Given a sequence of trees across 1" iterations, let 7, (syu) be the set of maximal
length intervals [a,b] C [1,T] where sy is in N (L") for all ¢ € [a, b]. Let U be the maximum
difference in counterfactual value between any two strategies, at any information state, and A
be the maximum number of actions at any information state.

Lemma 3. After running GT-CFR for I iterations starting at some initial public state sy, using
a value function with quality €, &, regret for the strategies satisfies the bound

> RT <N IFULY(e+€)

$i€S; (80) t=

+ > Sis)UVA D> Ve b)]

spubeuthl Lt [avb] €Tn (spub)

Proof. Starting with the definition of regret, and noting that regrets are independently max-
imised in a perfect recall game, we can rearrange terms to get

T T
Z Rl = Z (m@xzv”t*”f(si)—Zv”t(si)>
$:€8:(50) si€Si(so) \ =1 =1
T
N Sl ST S
T eSi(s0) \t=1 t=1

= rr}r?sz: Z <U“t‘_”7(s,~) — v”t(s,-)>

t=1 SiESi (50)

We can rewrite the counterfactual values of information state s; in terms of the counterfactual
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value of leaves and terminals of the tree

T

:maXE E E ( Sz|7T
¥
=1

T () = Pilsilrt)o™ (s:)
Spube}—(ct) 8;€S; (SpUb)

+Z Z( (2|7t 7)™

(2) = Pllm)e™ () |
Spub€Z (L) z€I(Spup)
Examining part of the first term inside the sum, we can independently maximise the counter-
factual values at each information state s;. As above, this is equivalent to maximising at public
state Spyp.

> (Plslmmi(s) -

SiGS'(Spub)

P(sifa)™ (s1))
Z max( (si]m )™ <™ ()

) = Psilr)o (s:)
5;€Si(Spub)

“max Y (RsdnoT o () = Blsile

5i€Si(spub)

<

Given that we individually maximised over each minuend, we satisfy the requirements of
Lemma(I] We can then use the value function quality bounds

Smwc 3 (07 @) - 0" (s)

5;€S;(Spub)

b (Bl ) - Bl ()

SGS(spub)

<et 3 (Plalme(s) - B (s)
51€S; (Spub)

Up to this point, we have used the true counterfactual values for the current policy profile. At

leaves, however, GT-CFR only has access to the value function’s noisy estimates of the true
values. Applying Lemma[2] we get

Seret Y (Bl (s) - Plsii ()
SiESi(Spub)
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Placing this back into Equation [T]and collecting € and £ terms, we have

> RT<Z|J-"£t (€+¢) +maxz

$:€8;i(s0)

> Y (Bl ) - Alsli ()

Spub EF (L) 5:€8; (Spup)
+ Y > (PE e m(E) - BT (2)
Spubez(ﬁt) Ze[(spub)

We can rearrange the sums to consider the regret contribution for each public state

—Z\fﬁt 6+f)—i—max Z

t=1 Spub€U$:1 Lt

Y Y (Bl )~ Pls T (s)

ts.t. SpubG}—(ﬁt) SiE€ES; (Spub)
bX S (el e ) - R )
t s.t. SpubEZ(Lt) ZGI(Spub)

As before we can use Lemmalto separate out regrets at the interior states in A" .= F(N([_, £')),
which always depend only on leaves and terminals. Let £ be £ minus all public states in A/
and any successor states.

<Z\fﬁ CEDYD VDI SET T

SpubEN [a,b] € Tn (Spub) 5i ESpub SpubEUtT:l Lt

> X (Pl s - PsdaoT (s0)

ts.t. SpubE}—(ﬁ ) 5;€S; (spuh)

Y > < 2t = t(Z)—R(ZW)”Wt(Z))

ts.t. Spubez( t) Ze[(spub)

Note that the states which were separated out are now effectively terminals in smaller trees. We
can repeat this process until regrets for all public states have been separated out.

< IFEIE+O+ > > o > R

SpubEUtT:1 Lt [a,b]E'Tn(Spub) Sz‘espub
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Finally, from bounds on regret-matching (32),

<SFEMEe+O+ Y Smluva S Vi)

spubeuthl Lt [avb] €Tn (Spub)
L]

Note that the form of Lemma[3|implies that regret might not be sub-linear if public states are
repeatedly added and removed from the lookahead tree. If we only add states and never remove
them, however, we get a standard CFR regret bound plus error terms for the value function.

Theorem 3. Assume the conditions of Lemma[3| hold, and public states are never removed from
the lookahead tree. Then

R <Y IFLe+ €+ Y |1Si(sm)[UVAT

t=1 SpubEN([,T)

Proof. This follows from Lemma [3| noting that the interior of £’ monotonically grows over
time. [l

Self-play Values as Re-solving Constraints

By using a value network in solving, we lose the ability to compute our opponent’s counter-
factual best response values to our average strategy (80). It is easy to track the opponent’s
average self-play value across iterations of a CFR variant, but using these values as re-solving
constraints does not trivially lead to a bound on exploitability for the re-solved strategy. We
show here that average CFR self-play values lead to reasonable, controllable error bounds in
the context of continual re-solving. We will use (z)* to mean max{z,0}. For simplicity, we
will also assume that the subgame that is being re-solved is in the GT-CFR lookahead tree for
all iterations.

Theorem 4. Assume we have some average strategy 7 generated by T iterations of GT-CFR
solver using a value function with quality €, £, with final lookahead tree LT where public states
were never removed from the lookahead tree, and a final average regret R! for the player of
interest. Further assume that we have re-solved some public subgame S rooted public state
Spub, USing the average counterfactual values v(s,) = % Zthl ™ (so) as the opt-out values in
the re-solving gadget. Let m° be the strategy generated from the re-solving game, with some

player and opponent average regrets R? and RS, respectively. Then
BVy™ — BVy <(R)T+ (R))T + R,

A
+2max [FLL )+ + > [Si(sn) U/ )
SpubeN(ET)

Spub
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Proof. The general outline of the proof has two parts, both asking the question "how much can
the opponent best response value increase?” As in Lemma 4 of (8), we can consider breaking the
error in re-solving opt-out values into separate underestimation and overestimation terms. The
first part of this proof is a bound that takes into account the re-solving solution quality, and how
much the average values underestimate the best response to the average. This underestimation
is bounded by the opponent regret at a subgame, which requires the solving algorithm to have
low regret everywhere in the game: low regret for the opponent does not directly imply that
the opponent has low regret in portions of the game that they do not play. The second part
of the proof is placing a bound on the overestimation, using the player’s regret rather than the
opponent’s regret.

We start by noting that from the opponent player o’s point of view, we can replace an infor-
mation set s, with a terminal that has utility BV ™ (s,), and the best response utility BV~ 5BV" ()
in this modified game will be equal to BV]. We can extend this to the entire subgame S, replac-
ing each s, with a terminal giving the opponent the best response value: BV’Z’S CBVTS) — BV?.

. . . . = S
Using this notation, we can rewrite BV, <™

BVT<™ _ BVT
:szr,S%BV”S(S) o BVZ-

Next, note that BV ™ (so), the opponent’s counterfactual best response to the re-solved sub-
game strategy 7 at any s, at the root of S, is no greater than the value of max{ BV™" (s,), %(s,)}
the value of s, within the re-solving game before the gadget where the opponent has decision
to opt-out for a fixed value ©(s,). That is, adding an extra opponent action which terminates the
game never decreases the opponent’s best response utility. Extending this to the entire subgame
S again, we get

BV?,SHBV“S(S) _BVT
_ S e - _
SBV;r,SV—max{BV (S),0} BVZ‘ (2)

From Lemma 1 of (8), the game value of a re-solving game with opt-out values v(s,) is
Usw+ 2 cs. (5pu8) v(s,), for some underestimation error on the opt-out values that is given by

S RSN _ = -~
Us. = min Z (BV (S0) — U(S0))

v,
S0€S, (spub)

Given the re-solving regrets, we have BVT. < (RS)* + (RF)* + US, + D s0eSu(sp) U(50)-
Because BV *< ¢ < BV7o“" 1 ¢ for ¢ > 0, we can use this inequality to update Equation[2]
That is, there is some per-information-set values ¢ such that BV™ (5) = o(-) + eand e - 1 <
(R3)T + (RY)*T + US, so that

0,7
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BVZ?,S(—maX{BV"S ()7} _ gyT
=BV} *“" — BV}
<BV™57 4 ¢.1 - BV
SBVTT 4 (BD) + (R) + Uz = BV] (3)
Looking at Ugﬂ_r, we note that this minimum is no greater than the case when 7* = 7. The
difference BV (s,) — ©(s,) is the average full counterfactual regret R, of strategy 7 at

So. Restricting our attention to Etp the portion of the lookahead tree restricted to sp,, and its

Spub’

descendants, Theorem |3| gives us a bound on Uq_f - and we can update Equation

BV,2C + (RO)T + (R))" + US. —BV]
<BVTS<U _ BVT (4)

_ _ A
+ (BT + (B max | F(LL )+ + Y [Silspw)lU T
spubeN(ﬁsT )

pub

Looking at just the difference in opponent counterfactual best response values, we can again
get an upper bound by giving the opponent the choice at all information sets at the root of
subgame S of playing a best response against the unmodified strategy 7 to get value BV™(S),
or opting out to get value v. )

BV™S<? _ BVT
<BVg,S(—maX{BVﬁ(S’),T}} - BVzr

(BVSTmBYIO g (BVE 1)

<(BVISm VIO gy BV —3,)

—(BVTSema{BVIS)T) _ 5y (7 )

=BV S BVIEN )+ (o] — ;)

S(ng,S&max{BVﬁ(s)ﬁ} —9,) + (BVI — ;)

—(BVTSemax{BVT(S)3} _ 5y | R, (5)

The difference of the first two terms is the regret in the opt-out game game described above,
where we have lifted each iteration strategy 7' into this game by never selecting the opt-out
choice. Consider the immediate counterfactual regret RT(SO) in this situation for any informa-
tion state s, in this augmented game. Writing this in terms of the original immediate counter-
factual regret R (s,) and the opt-out value, we get

R™(s,) = max{T(v[s,] — v[s,)), RT (s5)}
= (R"(s,))"
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Because the positive immediate regret in the opt-out game is the same as the positive regret
in the original game, we can use the Theorem [3| bound, which is composed from immediate
regrets. Putting this together with Equation 4 and Equation [5] we get

BVI<™ _ BVT
<(R))* + (RY)" + Ry

A
+ 2(max [ F (LY, )l(e + &) + %:ﬁ )ISz(Spub)\U T)
Spub € r

Spub

Continual Re-solving

Continual re-solving puts GT-CFR together with re-solving the previously solved subgame. A
bound on final solution quality follows directly from applications of Theorem [3]and Theorem 4]

Theorem 5. Assume we have played a game using continual re-solving, with one initial solve
and D re-solving steps. Each solving or re-solving step finds an approximate Nash equilibrium
through T iterations of GT-CFR using a value function with quality €, £, public states are never
removed from the lookahead tree, the maximum interior size Zspub en(ery |Si(spun)| of all looka-
head trees is bounded by N, the sum of frontier sizes across all lookahead trees is bounded by
F, the maximum number of actions at any information sets is A, and the maximum difference in
values between any two strategies is U. The exploitability of the final strategy is then bounded

by (5D +2) (Fle+€) + NU\@).

Proof. The exploitability EXPy of the player’s initial strategy from the original solve is bounded
by the sum of the regrets for both players. Theorem |3| provides regret bounds for GT-CFR, so

EXP, < 2 (F(e +&) + NU\/g)

Each subsequent re-solve is operating on the strategy of the previous step, using the average
values for the opt-out values. That is, the first re-solve will be updating the strategy from the
initial solve, the second re-solve will be updating the subgame strategy from the first re-solve,
and so on. Theorem @] provides a bound on how much the exploitability increases after each
re-solving step, with Theorem [3] providing the necessary regret bounds

_ _ _ [A
EXP; <EXP, | + (R5)" + (RY)" + R; +2 (F(e +&)+NU T)

<EXP, 1+5 (F(e + &) + NU\/g)

Unrolling for D re-solving steps leads to the final bound. ]
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World states and actions Observations

w Player 1 Player 2 Public
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O priv(1) ! prive?) ,.'0 privi2)

Histories and information states

Figure S1: An example of a Factored-Observation Stochastic Game (FOSG). This figure
presents the visual view of notation from [Background and Terminologyl In this example the
game starts in w™* which is the complete state of the environment containing private informa-
tion for both players. After playing action a, the state moves to w" where there are two possible
actions. Each action emits private and public observations. In this example, actions a; and g,
emit the same private observation Ol:l)riv(l) for player 1, therefore they cannot distinguish which
action happened. On the other hand, player 2 has different observations o;riv@) and Ogriv(z) for
each of the actions, therefore they have more information about the state of the environment
than player 1. The sequence of public observations shared by both players information is de-
noted as sp,. Both sequences of actions and factored observations meet in the final ‘Histories
and information states’ view. The two possible action sequences are represented by histories A
and hy, where hy = (a;, a;), h1 = (a;,a;). Since both actions a; and a; result in the same ob-
servation for player 1, they cannot tell which one of the histories happened and his information
state 5, contains them both. This is not the case for player 2, who can separate the histories, and
each of his information states sy and s; contains just one history.
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90 (~000) ~0

Figure S2: An example of a public tree. The public tree provides different view of the FOSG.
In this example actions ag and a; emit the same public observation and therefore they lead to
the same public tree node sgub. On the other hand, action a, can lead to multiple possible states:
for instance when a detective in Scotland Yard moves to a location the game can either 1) end
because Mr. X was there and he was caught or 2) it continues because he was in a different

station.
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Figure S3: Initial situation on the glasses map for Scotland Yard. Mr. X starts at station 6
while the two detectives start at stations 1 and 11. All of them have 5 taxi cards (all edges in
this map are of the same type) and the game is played for 5 rounds.
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Figure S4: Comparing performance of DQN, A2C, tabular Q-learning and uniform ran-
dom policy in (A) Kuhn poker and (B) Leduc poker.
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Game

Architecture

Belief features

Public state features

Chess

Go

Poker

Scotland Yard

ResNet

ResNet

MLP 6 x 2048

MLP 6 x 512

Redundant — there
iS no uncertainty over
players state.

Redundant

1326 (possible private
card combinations) * 2
(num of players).

1 (detectives’ position
is always certain) + 199
(possible Mr X’s posi-
tion).

One 8x8 plane for each
piece type (6) of each
player (2) and repeti-
tions planes (2) for last
eight moves + scalar
planes (7), 119 8x8
planes in total.

One 19x19 plane for
stones of each player
(2) for last eight moves
plus a single plane en-
coding player to act, 17
19x19 planes in total.

N hot encoding of
board cards (52) +
commitment of each
player normalized by
his stack (2) + 1 hot
encoding of who acts
next, including chance
player (3).

1 hot encoding of po-
sition of each detective
(5*199) + cards of each
detective (5*3) + cards
of Mr X (5) + who is
playing next (6) + was
double move just used
(1) + how many rounds
were played (1).

Table S1: A neural network architecture and features used for each game.
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Hyperparam Symbol Chess Go  Scot. Yard HUNL
Batch size 2048 2048 1024 1024
Optimizer sgd sgd  sgd adam
Initial learning rate (LR) Qinit 0.1 0.02 0.1 0.0001
LR decay steps Tlecay 40k 200k 2M 2M
LR decay rate d 0.8 0.1 0.5 0.5
Policy head weight wp 1 1 0.05 0.01
Value head weight Wy 025 05 1 1
Replay buffer size 50M 50M 1M IM
Max grad updates per example 1 02 5 10
TD(1) target sample probability Drd1 0 02 0 0
Queries per search Qscarch 1 0 0.3 0.9
Recursive queries per search Qrecursive 0.2 0 0.1 0.1
Self-play uniform policy mix € 0 0 0 0.1
Resign enabled True  True False False
Resign threshold resign_threshold | -0.9 -09 - -

Min ratio of games without resign  ppo resign 0.2 0.2 - -
Greedy play after move MOVESgreedy after | 30 30 never never
Max moves in one episode MOVESmax 512 722 unlim. unlim.
Prior softmax temperature Torior 1.5 1.5 1 1

Table S2: Hyperparameters for each game.
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Agent Rel. Elo

AlphaZero(s=16k, t=800k) +3139
AlphaZero(s=16k, t=400k) +3021
AlphaZero(s=8k, t=800k) +2875
AlphaZero(s=8k, t=400k) +2801
AlphaZero(s=4k, t=800k) +2643
AlphaZero(s=16k, t=200k)  +2610
AlphaZero(s=4k, t=400k) +2584
AlphaZero(s=2k, t=800k) +2451
AlphaZero(s=8k, t=200k) +2428
AlphaZero(s=2k, t=400k) +2353
AlphaZero(s=4k, t=200k) +2234
AlphaZero(s=800, t=800k) +2099
AlphaZero(s=16k, t=100k) +2088
AlphaZero(s=2k, t=200k) +2063
AlphaZero(s=800, t=400k) +2036

SoG(s=16k, c=10) +1970
AlphaZero(s=8k, t=100k) +1940
SoG(s=8Kk, c=10) +1902
AlphaZero(s=800, t=200k) +1812
SoG(s=4k, c=10) +1796
AlphaZero(s=4k, t=100k) +1783
SoG(s=2k, c=10) +1672
AlphaZero(s=2k, t=100k) +1618
SoG(s=800, c=1) +1426
AlphaZero(s=800, t=100k) +1360
Pachi(s=100k) +869
Pachi(s=10k) +231
GnuGo(1=10) +0

Table S3: Full Go results (Non Recursive Queries). Elo of GnuGo with a single thread
and 100ms thinking time was set to be 0. AlphaZero(s=16k, t=800k) refers to 16000 search
simulations after 800000 training steps.
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Agent Rel. Elo

AlphaZero(s=16k, t=800k) +3431
AlphaZero(s=16k, t=400k) +3319
AlphaZero(s=8k, t=800k) +3169
AlphaZero(s=8k, t=400k) +3093
AlphaZero(s=4k, t=800k) +2933
AlphaZero(s=16k, t=200k)  +2899
AlphaZero(s=4k, t=400k) +2880
AlphaZero(s=2k, t=800k) +2745
AlphaZero(s=8k, t=200k) +2712
AlphaZero(s=2k, t=400k) +2643
AlphaZero(s=4k, t=200k) +2509
AlphaZero(s=800, t=800k) +2394
AlphaZero(s=16k, t=100k) +2391
AlphaZero(s=2k, t=200k) +2348
AlphaZero(s=800, t=400k) +2315
AlphaZero(s=8k, t=100k) +2240
AlphaZero(s=800, t=200k) +2105
AlphaZero(s=4k, t=100k) +2078

SoG(s=16k, c=10) +2025
SoG(s=8k, c=10) +1937
AlphaZero(s=2k, t=100k) +1928
SoG(s=4k, c=10) +1838
SoG(s=2Kk, c¢=10) +1766
AlphaZero(s=800, t=100k) +1644
SoG(s=800, c=1) +1579
Pachi(s=100k) +958
Pachi(s=10k) +227
GnuGo(1=10) +0

Table S4: Full Go results (Recursive Queries). Elo of GnuGo with a single thread and 100ms
thinking time was set to be 0. AlphaZero(s=16k, t=800k) refers to 16000 search simulations
after 800000 training steps.
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Num. Sims | UCT const. (C) || Expl. (mvd) Expl. (mvis) Expl. (mval)
10 1.0 2168 2449 2173
10 2.0 2058 2408 2341
10 5.0 1902 2615 2517
10 10.0 1738 2555 2360
10 13.0 1799 2517 2598
10 20.0 1821 2830 2349
10 26.0 1888 2861 2669
100 1.0 1489 1509 1333
100 2.0 1404 1587 1395
100 5.0 1239 1145 1094
100 10.0 1213 1195 1245
100 13.0 1218 1292 1227
100 20.0 1350 1456 1342
100 26.0 1448 1747 1568
1000 1.0 1323 1218 1177
1000 2.0 1069 1212 864
1000 5.0 699 778 681
1000 10.0 697 601 632
1000 13.0 741 759 744
1000 20.0 859 962 991
1000 26.0 966 1029 1057
10000 1.0 1348 948 1134
10000 2.0 911 877 763
10000 5.0 516 582 538
10000 10.0 490 485 480
10000 13.0 511 465 470
10000 20.0 572 505 505
10000 26.0 631 575 570

Table S5: Average exploitability (in mbb/h) over five policy constructions obtained by
independent searches of IS-MCTS runs at each information state in Leduc Poker. The
parameter C' is the value of the UCT exploration constant. The final policy is obtained either
by normalizing the visit counts (mvd), choosing the action with maximum visits (mvis), or
choosing the action with the maximal Monte Carlo value estimate (mval).
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Parameter DQN Tabular A2C
Q-Learning
Learning rate (Ir) le-1, le-2, le-3, le-4 NA Actor Ir: 1e-3, 1le-4, le-5
Critic 1Ir: 1e-2, 1e-3
" Decaying exploration rate | 1.,0.8,0.5,02,0.1 | NA | NA
" Replay buffer size | 100, 1000, 10000, 100000 | NA | NA
Hiddenlayersize | oer . | T AUt TR
’32,32’,°64, 64° NA ’32,32’,°64, 64°
" Num. of critic updates | NA ] NA | 48,16
before every actor update
Stepsize | NA 01,0205 |
0.8,1.0

Table S6: Hyper parameters swept over in each RL algorithm.
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