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Abstract

| argue that data becomes temporarily interesting by iteedbme self-impro-
ving, but computationally limited, subjective observeceme learns to predict or
compress the data in a better way, thus making it subjegtsietpler and more
beautiful. Curiosity is the desire to create or discover more non-remdaeon-
arbitrary, regular data that is novel asdrprising not in the traditional sense of
Boltzmann and Shannon but in the sense that it allows for cessfpon progress
because its regularity was not yet known. This drive maxasiizterestingnesshe
first derivative of subjective beauty or compressibilihat is, the steepness of the
learning curve. It motivates exploring infants, pure mathtécians, composers,
artists, dancers, comedians, yourself, and (since 19¢i0¢iat systems.

First version of this preprint published 23 Dec 2008; redisks April 2009. Short
version: [91]. Long version: [[90]. We distill some of the er$ial ideas in earlier
work (1990-2008) on this subject: [67,158.,161] 59] 60,/108/8876] and especially
recent papers 81, 87, 88, 89].
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1 Store & Compress & Reward Compression Progress

If the history of the entire universe were computable [123]]1and there is no evi-
dence against this possibility [84], then its simplest exption would be the shortest
program that computes it [65, [70]. Unfortunately there igganeral way of finding the
shortest program computing any given data [34,] 106] 107, Bigrefore physicists
have traditionally proceeded incrementally, analyzirgg pusmall aspect of the world
at any given time, trying to find simple laws that allow for deking their limited
observations better than the best previously known lavergsgly trying to find a pro-
gram that compresses the observed data better than the®edsusly known program.
For example, Newton’s law of gravity can be formulated asatgbiece of code which
allows for substantially compressing many observatiomenges involving falling ap-
ples and other objects. Although its predictive power istiish—for example, it does
not explain quantum fluctuations of apple atoms—it stilba# for greatly reducing the
number of bits required to encode the data stream, by assgjgiort codes to events
that are predictable with high probability [28] under thewsption that the law holds.
Einstein’s general relativity theory yields additionahtpression progress as it com-
pactly explains many previously unexplained deviationsfiNewton’s predictions.

Most physicists believe there is still room for further adeeas. Physicists, however,
are not the only ones with a desire to improve the subjectivepressibility of their
observations. Since short and simple explanations of tisé yually reflect some
repetitive regularity that helps to predict the future adlweveryintelligent system
interested in achieving future goals should be motivatembtopress the history of raw
sensory inputs in response to its actions, simply to impisvability to plan ahead.

A long time ago, Piaget [49] already explained the expleeatearning behav-
ior of children through his concepts of assimilation (neywuts are embedded in old
schemas—this may be viewed as a type of compression) anthawogation (adapting
an old schema to a new input—this may be viewed as a type of @ssipn improve-
ment), but his informal ideas did not provide enough formeahds to permit computer
implementations of his concepts. How to model a compregsiogress drive in arti-
ficial systems? Consider an active agent interacting witmgially unknown world.
We may use our general Reinforcement Learning (RL) framkwbartificial curiosity



(1990-2008)[57, 58, 61, 59, 60, 108,/68| [72,[76,/81| 88, 8rtBMake the agent dis-
cover data that allows for additional compression progaessmproved predictability.
The framework directs the agent towards a better underistgutice world through ac-
tive exploration, even when external reward is rare or ab$eroughintrinsic reward
or curiosity rewardfor actions leading to discoveries of previously unknowguiari-
ties in the action-dependent incoming data stream.

1.1 Outline

Sectior 1.2 will informally describe our algorithmic framerk based on: (1) a contin-
ually improving predictor or compressor of the continughpwing data history, (2) a
computable measure of the compressor’s progress (to atddutrinsic rewards), (3) a
reward optimizer or reinforcement learner translatingalg into action sequences ex-
pected to maximize future reward. The formal details arettethe Appendix, which
will elaborate on the underlying theoretical concepts aascdbe discrete time im-
plementations. Sectidn 1.3 will discuss the relation teewl reward (external in
the sense of: originating outside of the brain which is agltiirg the actions of its
“external” body). Sectiofi]2 will informally show that mangsential ingredients of
intelligence and cognition can be viewed as natural coreeeps of our framework,
for example, detection of novelty & surprise & interestiegn, unsupervised shifts of
attention, subjective perception of beauty, curiositgativity, art, science, music, and
jokes. In particular, we reject the traditional Boltzmar®hannon notion of surprise,
and demonstrate that both science and art can be regardgepasducts of the desire
to create / discover more data that is compressible in hidherknown ways. Section
will give an overview of previous concrete implementatiaf approximations of
our framework. Sectiolll 4 will apply the theory to imagesaatl to human observers,
illustrating the rewarding learning process leading fr@sslto more subjective com-
pressibility. Sectiofi]5 will outline how to improve our pieus implementations, and
how to further test predictions of our theory in psychologyg aeuroscience.

1.2 Algorithmic Framework

The basic ideas are embodied by the following set of simmerghmic principles

distilling some of the essential ideas in previous pubiaes on this topicl[57, 58, 61,
59,60/ 108, 68, 72, 76, 81,188,187/ 89]. As mentioned abovemdbdetails are left to

the Appendix. As discussed in Sectidn 2, the principles adtlgualitatively explain
many aspects of intelligent agents such as humans. ThisieEages us to implement
and evaluate them in cognitive robots and other artificiateayps.

1. Store everything. During interaction with the world, store the entire raw bigt
of actions and sensory observations including reward gnthe data ifolyas
it is the only basis of all that can be known about the worlds@e that full data
storage is not unrealistic: A human lifetime rarely lastscionger tharg x 10°
seconds. The human brain has rougtiy’ neurons, each with0* synapses on
average. Assuming that only half of the brain’s capacitysiscufor storing raw
data, and that each synapse can store at most 6 bits, théhesis@mugh capacity



to encode the lifelong sensory input stream with a rate ofinbu10° bits/s,
comparable to the demands of a movie with reasonable résoluthe storage
capacity of affordable technical systems will soon excéésivalue. If you can
store the data, do not throw it away!

2. Improve subjective compressibility. In principle, any regularity in the data
history can be used to compress it. The compressed versitre afata can be
viewed as its simplifying explanation. Thus, to better explthe world, spend
some of the computation time on an adaptive compressionitdgotrying to
partially compress the data. For example, an adaptive heataork [§] may
be able to learn to predict or postdict some of the historia l@m other his-
toric data, thus incrementally reducing the number of ltpiired to encode the
whole. See Appendix’/Al3 and A.5.

3. Letintrinsic curiosity reward reflect compression progress. The agent should
monitor the improvements of the adaptive data compresdwenever it learns to
reduce the number of bits required to encode the histori, denherate an intrin-
sic reward signal or curiosity reward signal in proportiortte learning progress
or compression progress, that is, the number of saved bés.AppendiX’A.b

andA.6.

4. Maximize intrinsic curiosity reward [57,[58/61] 58, 60, 108, 68, 172,176,81] 88,
87]. Let the action selector or controller use a general iRetement Learning
(RL) algorithm (which should be able to observe the curréatesof the adaptive
compressor) to maximize expected reward, including isicicuriosity reward.
To optimize the latter, a good RL algorithm will select aoathat focus the
agent’s attention and learning capabilities on those aspéthe world that allow
for finding or creating new, previously unknown but learmat#gularities. In
other words, it will try to maximize the steepness of the coaspor’s learning
curve. This type ofctive unsupervised learningan help to figure out how the
world works. See Appendix AL, A.B. AR, AlNO.

The framework above essentially specifies the objectives @frious or creative
system, not the way of achieving the objectives through th@ce of a particular
adaptive compressor or predictor and a particular RL adlgori Some of the possi-
ble choices leading to special instances of the framewardtyding previous concrete
implementations) will be discussed later.

1.3 Relation to External Reward

Of course, the real goal of many cognitive systems is nottpusatisfy their curiosity,
but to solve externally given problems. Any formalizablelgem can be phrased as an
RL problem for an agent living in a possibly unknown envirat) trying to maximize
the future external reward expected until the end of its ipbshnite lifetime. The new
millennium brought a few extremely general, even univeRiahklgorithms (universal
problem solvers or universal artificial intelligences—sgpendix'A.8[A.9) that are
optimal in various theoretical but not necessarily pradtgenses, e. gl, [20, 79,182,



83,186/ 85, 92]. To the extent that learning progress / coagwa progress / curiosity
as above are helpful, these universal methods will autaalitidiscover and exploit
such concepts. Then why bother at all writing down an expliamework for active

curiosity-based experimentation?

One answer is that the present universal approaches swdepthe carpet certain
problem-independent constant slowdowns, by burying thetihhé asymptotic notation
of theoretical computer science. They leave open an easeathaining question:
If the agent can execute only a fixed number of computatiorsituctions per unit
time interval (say, 10 trillion elementary operations pecand), what is the best way
of using them to get as close as possible to the recent theadriits of universal
Als, especially when external rewards are very rare, asé<#se in many realistic
environments? The premise of this paper is that the cuyidsitve is such a general
and generally useful concept for limited-resource RL irfgward environments that
it should be prewired, as opposed to be learnt from scratchate on (constant but
possibly still huge) computation time. An inherent assuorpof this approach is that
in realistic worlds a better explanation of the past can dwip to better predict the
future, and to accelerate the search for solutions to ealigrgiven tasks, ignoring the
possibility that curiosity may actually be harmful and tkie cat.”

2 Consequences of the Compression Progress Drive

Let us discuss how many essential ingredients of intelbgeand cognition can be
viewed as natural by-products of the principles above.

2.1 Compact Internal Representations or Symbols as By-Pragtts
of Efficient History Compression

To compress the history of observations so far, the comprésay, a predictive neural
network) will automatically create internal represemasi orsymbols(for example,
patterns across certain neural feature detectors) fogshimat frequently repeat them-
selves. Even when there is limited predictability, effitienmpression can still be
achieved by assigning short codes to events that are pabtiaith high probability
[28,195]. For example, the sun goes up every day. Hence ificsezft to create internal
symbols such agdaylightto describe this repetitive aspect of the data history byoatsh
reusable piece of internal code, instead of storing justdiledata. In fact, predictive
neural networks are often observed to create such inteandlt{ierarchical) codes as a
by-product of minimizing their prediction error on the tizig data.

2.2 Consciousness as a Particular By-Product of Compressio

There is one thing that is involved in all actions and senggoyts of the agent, namely,
the agentitself. To efficiently encode the entire data hystowill profit from creating
some sort of internasymbolor code (e. g., a neural activity pattern) representing
the agent itself. Whenever this representation is actiusbd, say, by activating the



corresponding neurons through new incoming sensory inpruégherwise, the agent
could be calledself-awareor conscious.

This straight-forward explanation apparently does nondba any essential as-
pects of our intuitive concept of consciousness, yet seernstantially simpler than
other recent views [1,12, 105, 1101,/ 25] 12]. In the rest of plaiger we will not have to
attach any particular mystic value to the notion of conssmmss—in our view, it is just
a natural by-product of the agent’s ongoing process of gralgolving and world mod-
eling through data compression, and will not play a prominele in the remainder of
this paper.

2.3 The Lazy Brain’s Subjective, Time-Dependent Sense of Baty

LetO(t) denote the state of some subjective obsefvat timet. According to outazy
brain theory[67,[66/69, 81, 87, 8], we may identify the subjective bgaditD, O(t))
of a new observatio (but not its interestingness - see Secfion 2.4) as beingoprop
tional to the number of bits required to encddegiven the observer’s limited previous
knowledge embodied by the current state of its adaptive cesspr. For example, to
efficiently encode previously viewed human faces, a congoresuch as a neural net-
work may find it useful to generate the internal represemtatif a prototype face. To
encode a new face, it must only encode the deviations frorprhitype [67]. Thus
a new face that does not deviate much from the prototype @]Avél be subjectively
more beautiful than others. Similarly for faces that extgigiometric regularities such
as symmetries or simple proportions[69] 88]—in principles compressor may ex-
ploit any regularity for reducing the number of bits reqdite store the data.

Generally speaking, among several sub-patterns clasag@inparabldoy a given
observer, the subjectively most beautiful is the one withdimplest (shortest) descrip-
tion, given the observer’s current particular method focagting and memorizing it
[67,[69]. For example, mathematicians find beauty in a singptef with a short
description in the formal language they are using. Othé&esdieometrically simple,
aesthetically pleasing, low-complexity drawings of vasmbjects{[67, 69].

This immediately explains why many human observers prefggs similar to their
own. What they see every day in the mirror will influence treeibjective prototype
face, for simple reasons of coding efficiency.

2.4 Subjective Interestingness as First Derivative of Subgtive
Beauty: The Steepness of the Learning Curve

What'’s beautiful is not necessarily interesting. A beaultifiing is interesting only as
long as it is new, that is, as long as the algorithmic regtyldhiat makes it simple has
not yet been fully assimilated by the adaptive observer wistili learning to compress
the data better. It makes sense to define the time-dependgattvelnterestingness
I(D,O(t)) of dataD relative to observed at timet by

dB(D,0(t))

1(D,0(t) ~ ===,

1)



thefirst derivativeof subjective beauty: as the learning agent improves itgpression
algorithm, formerly apparently random data parts becontgestively more regular
and beautiful, requiring fewer and fewer bits for their edicg. As long as this process
is not over the data remains interesting and rewarding. TopeeAdix and Sectidd 3 on
previous implementations will describe details of disetéhe versions of this concept.
See also[[59, 60, 108, 68.]72., 76! 81,188, 87].

2.5 Pristine Beauty & Interestingness vs External Rewards

Note that our above concepts of beauty and interestingrresknzited andpristine

in the sense that they aret a priori related to pleasure derived from external re-
wards (compare Sectign 1.3). For example, some might claatnet hot bath on a cold
day triggers “beautiful” feelings due to rewards for aclvigvprewired target values
of external temperature sensors (external in the senseut$ide the brain which is
controlling the actions of its external body). Or a song maychlled “beautiful” for
emotional (e.g./[13]) reasons by some who associate itmwimories of external plea-
sure through their first kiss. Obviously this is not what weehin mind here—we are
focusing solely on rewards of the intrinsic type based omiieg progress.

2.6 True Novelty & Surprise vs Traditional Information Theo ry

Consider two extreme examples of uninteresting, unsungri®oring data: A vision-
based agent that always stays in the dark will experiencexmaneely compressible,
soon totally predictable history of unchanging visual itgpun front of a screen full
of white noise conveying a lot of information and “noveltyich“surprise” in the tra-
ditional sense of Boltzmann and Shannon [102], however,litexperience highly
unpredictable and fundamentally incompressible data.oth bases the data is bor-
ing [72,88] as it does not allow for further compression pesg. Therefore we re-
ject the traditional notion of surprise. Neither the awniyr nor the fully predictable
is truly novel or surprising—only data with stillnknownalgorithmic regularities are
[57,58/61/ 59, 60, 108, 68, 172,76, 81] 88,(87, 89]!

2.7 Attention / Curiosity / Active Experimentation

In absence of external reward, or when there is no known wayrther increase
the expected external reward, our controller essentiaiyg to maximizetrue nov-
elty or interestingnesghe first derivativeof subjective beauty or compressibility, the
steepness of the learning curve. It will do its best to sedetibn sequences expected
to create observations yielding maximal expected futurepre@ssiorprogress given
the limitations of both the compressor and the compressprawement algorithm.
It will learn to focus its attention [96, 116] and its actiyethosen experiments on
things that are currently still incompressible but are etpe to become compressible
/ predictable through additional learning. It will get bdrey things that already are
subjectively compressible. It will also get bored by thirilgat are currently incom-
pressible but will apparently remain so, given the expeeeso far, or where the costs



of making them compressible exceed those of making othegshtompressible, etc.
[57,/58/61/ 50, 60, 108, 68, 1712,/76. 81! 88,(87, 89].

2.8 Discoveries

An unusually large compression breakthrough deservesimediscovery For exam-
ple, as mentioned in the introduction, the simple law of gyasan be described by a
very short piece of code, yet it allows for greatly compnegsill previous observations
of falling apples and other objects.

2.9 Beyond Standard Unsupervised Learning

Traditional unsupervised learning is about finding regtiés, by clustering the data,
or encoding it through a factorial codel [4,164] with statiatly independent compo-
nents, or predicting parts of it from other parts. All of tingy be viewed as special
cases of data compression. For example, where there aterslus data point can be
efficiently encoded by its cluster center plus relatively fats for the deviation from
the center. Where there is data redundancy, a non-redufataotial code([64] will
be more compact than the raw data. Where there is preditgabdmpression can be
achieved by assigning short codes to those parts of thewaigars that are predictable
from previous observations with high probability [28] 96enerally speaking we may
say that a major goal of traditional unsupervised learrsrig improve the compression
of the observed data, by discovering a program that compuigdthus explains the his-
tory (and hopefully does so quickly) but is clearly shorteart the shortest previously
known program of this kind.

Traditional unsupervised learning is not enough thoughusit analyzes and en-
codes the data but does not choose it. We have to extend f #hendimension of
active action selection, since our unsupervised learnest mlso choose the actions
that influence the observed data, just like a scientist cimbis experiments, a baby its
toys, an artist his colors, a dancer his moves, or any ateestistem([96] its next sen-
sory input. That's precisely what is achieved by our RL-lbasamework for curiosity
and creativity.

2.10 Art & Music as By-Products of the Compression Progress
Drive

Works of art and music may have important purposes beyondsbeial aspects [3]
despite of those who classify art as superfluous [50]. Gomtiier-dependent art
deepens the observer’s insights about this world or passibkids, unveiling previ-
ously unknown regularities in compressible data, conngatreviously disconnected
patterns in an initially surprising way that makes the camkbion of these patterns
subjectively more compressible (art as an eye-opener)eutually becomes known
and less interesting. | postulate that the active creatimhadtentive perception of all
kinds of artwork are just by-products of our principle ofdrgstingness and curiosity
yielding reward for compressor improvements.



Let us elaborate on this idea in more detail, following thecdssion in[[81, 88].
Artificial or human observers must perceive art sequentiaiid typically also actively,
e.g., through a sequence of attention-shifting eye sasgadsamera movements scan-
ning a sculpture, or internal shifts of attention that fikexd emphasize sounds made by
a pianist, while surpressing background noise. Undoupiadiny derive pleasure and
rewards from perceiving works of art, such as certain pagsti or songs. But differ-
ent subjective observers with different sensory apparati@mpressor improvement
algorithms will prefer different input sequences. Hencg abjective theory of what
is good art must take the subjective observer as a parartetarswer questions such
as: Which sequences of actions and resulting shifts of tadteshould he execute to
maximize his pleasure? According to our principle he shealdct one that maximizes
the quickly learnable compressibility that is new, relatig his current knowledge and
his (usually limited) way of incorporating / learning / conepsing new data.

2.11 Music

For example, which song should some human observer selgt? ot the one he
just heard ten times in a row. It became too predictable irptioeess. But also not
the new weird one with the completely unfamiliar rhythm aaddlity. It seems too
irregular and contain too much arbitrariness and subjectdise. He should try a song
that is unfamiliar enough to contain somewhat unexpecteshdaies or melodies or
beats etc., but familiar enough to allow for quickly recazing the presence of a new
learnable regularity or compressibility in the sound stwre&Sure, this song will get
boring over time, but not yet.

The observer dependence is illustrated by the fact thabiBmrgy’s twelve tone
music is less popular than certain pop music tunes, predyrbhabause its algorithmic
structure is less obvious to many human observers as it edb@s more complicated
harmonies. For example, frequency ratios of successivesrinttwelve tone music
often cannot be expressed as fractions of very small insedenose with a prior ed-
ucation about the basic concepts and objectives and contstod twelve tone music,
however, tend to appreciate Schonberg more than thosewtigtuch an education.

All of this perfectly fits our principle: The learning algtrim of the compressor
of a given subjective observer tries to better compressikisery of acoustic and other
inputs where possible. The action selector tries to findbhysinfluencing actions that
help to improve the compressor’s performance on the higorfar. The interesting
musical and other subsequences are those with previoushoum yet learnable types
of regularities, because they lead to compressor improm&sn&he boring patterns are
those that seem arbitrary or random, or whose structurestsnhard to understand.

2.12 Paintings, Sculpture, Dance, Film etc.

Similar statements not only hold for other dynamic art idlahg film and dance (taking
into account the compressibility of controller actions)t blso for painting and sculp-
ture, which cause dynamic pattern sequences due to atiesttiiing actions [96, 116]
of the observer.
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2.13 No Objective “Ideal Ratio” Between Expected and Unexpsted

Some of the previous attempts at explaining aesthetic epaas in the context of
information theory[[7| 41,16, 44] emphasized the idea of‘ideal” ratio between
expected and unexpected information conveyed by someediestivject (its*order”

vs its “complexity”). Note that our alternative approach does not have to paistul
an objective ideal ratio of this kind. Instead our dynamicamee of interestingness
reflects thechangein the number of bits required to encode an object, and explic
takes into account the subjective observer’s prior knogdeals well as the limitations
of its compression improvement algorithm.

2.14 Blurred Boundary BetweenActive Creative Artists and Pas-
sive Perceivers of Art

Just as observers get intrinsic rewards for sequentiatlydimg attention on artwork
that exhibits new, previously unknown regularities, theativeartists get reward for
making it. For example, | found it extremely rewarding toadiger (after hundreds of
frustrating failed attempts) the simple geometric regtits that permitted the con-
struction of the drawings in Figurés 1 abd 2. The distinctimtween artists and
observers is blurred though. Both execute action sequdnceshibit new types of
compressibility. The intrinsic motivations of both areljutompatible with our simple
principle.

Some artists, of course, craesternalreward from other observers, in form of
praise, money, or both, in addition to tir@rinsic compression improvement-based
reward that comes from creating a truly novel work of art. @rinciple, however,
conceptually separates these two reward types.

2.15 How Artists and Scientists are Alike

From our perspective, scientists are very much like artishey actively select experi-
ments in search for simple but new laws compressing thetieguabservation history.
In particular, thecreativityof painters, dancers, musicians, pure mathematiciansjphy
cists, can be viewed as a mere by-product of our curiosityéssork based on the com-
pression progress drive. All of them try to create new but-rammom, non-arbitrary
data with surprising, previously unknown regularities.r ERample, many physicists
invent experiments to create data governed by previoudtpann laws allowing to
further compress the data. On the other hand, many artistbice well-known ob-
jects in a subjectively novel way such that the observetjestive description of the
result is shorter than the sum of the lengths of the desoriptdf the parts, due to some
previously unnoticed regularity shared by the parts.

What is the main difference between science and art? Theessé science is to
formally nail downthe nature of compression progress achieved through thewisy
of a new regularity. For example, the law of gravity can becdbed by just a few
symbols. In the fine arts, however, compression progresehby observing an
artwork combining previously disconnected things in a neay ¢art as an eye-opener)
may besulronscious and not at all formally describable by the obsewleo mayfeel

11



the progress in terms of intrinsic reward without being dblsay exactly which of his
memories became more subjectively compressible in theepsoc

The framework in the appendix is sufficiently formal to allfov implementation
of our principle on computers. The resulting artificial olvees will vary in terms of
the computational power of their history compressors aadhiag algorithms. This
will influence what is good art / science to them, and what fiveyinteresting.

2.16 Jokes and Other Sources of Fun

Just like other entertainers and artists, comedians atwb tte combine well-known
concepts in a novel way such that the observer's subjectgergption of the result
is shorter than the sum of the lengths of the descriptiondhefparts, due to some
previously unnoticed regularity shared by the parts.

In many ways the laughs provoked by witty jokes are similahtse provoked by
the acquisition of new skills through both babies and ad#l&st the age of 25 | learnt
to juggle three balls. It was not a sudden process but anrirem&al and rewarding
one: in the beginning | managed to juggle them for maybe ooerskbefore they fell
down, then two seconds, four seconds, etc., until | was abtiotit right. Watching
myself in the mirror (as recommended by juggling teachers)ticed an idiotic grin
across my face whenever | made progress. Later my little itaugrinned just like
that when she was able to stand on her own feet for the first tihleof this makes
perfect sense within our algorithmic framework: such gpnssumably are triggered
by intrinsic reward for generating a data stream with presip unknown regularities,
such as the sensory input sequence corresponding to abgeneéself juggling, which
may be quite different from the more familiar experience lo$@rving somebody else
juggling, and therefore truly novel and intrinsically raing, until the adaptive pre-
dictor / compressor gets used to it.

3 Previous Concrete Implementations of Systems Driven
by (Approximations of) Compression Progress

As mentioned earlier, predictors and compressors arelglodated. Any type of par-
tial predictability of the incoming sensory data stream lbarexploited to improve the
compressibility of the whole. Therefore the systems dbsdrin the first publications
on artificial curiosity [57] 58, 61] already can be viewed aamples of implementa-
tions of a compression progress drive.

3.1 Reward for Prediction Error (1990)

Early work [57,58) 6] described a predictor based on a reotimeural network
[115,[120/ 55 62, 47, 78] (in principle a rather powerful gurtational device, even
by today’s machine learning standards), predicting sensgouts including reward
signals from the entire history of previous inputs and axdioThe curiosity rewards
were proportional to the predictor errors, that is, it wapligitly and optimistically
assumed that the predictor will indeed improve whenevearitsr is high.
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3.2 Reward for Compression Progress Through Predictor Impove-
ments (1991)

Follow-up work [59,60] pointed out that this approach mayitmppropriate, espe-
cially in probabilistic environments: one should not focusthe errors of the predic-
tor, but on its improvements. Otherwise the system will @mrate its search on those
parts of the environment where it can always get high prexfiarrors due to noise or
randomness, or due to computational limitations of the ipted which will prevent
improvements of the subjective compressibility of the dathile the neural predic-
tor of the implementation described in the follow-up workswadeed computationally
less powerful than the previous onel[61], there was a nquetyely, an explicit (neu-
ral) adaptive model of the predictor’'s improvements. Thiged essentially learned to
predict the predictor's changes. For example, althougbawas unpredictable and led
to wildly varying target signals for the predictor, in theafprun these signals did not
change the adaptive predictor parameters much, and thisaneaf predictor changes
was able to learn this. A standard RL algorithm [1114,[33, M0&% fed with curiosity
reward signals proportional to the expected long-termiptedchanges, and thus tried
to maximize information gain [16, 31, 38,151, 14] within thigen limitations. In fact,
we may say that the system tried to maximize an approximatidhe (discounted)
sum of the expected first derivatives of the data’s subjeqtredictability, thus also
maximizing an approximation of the (discounted) sum of theeeted changes of the
data’s subjective compressibility.

3.3 Reward for Relative Entropy between Agent’s Prior and Pg-
terior (1995)

Additional follow-up work yielded an information theoryiented variant of the ap-
proach in non-deterministic worlds [108] (1995). The caitp reward was again
proportional to the predictor’s surprise / informationmatihis time measured as the
Kullback-Leibler distancé [35] between the learning pesali's subjective probability
distributions before and after new observations - theikgantropy between its prior
and posterior.

In 2005 Baldi and ltti called this approach “Bayesian swggtiand demonstrated
experimentally that it explains certain patterns of humeual attention better than
certain previous approachés[32].

Note that the concepts of Huffman coding[[28] and relativieagy between prior
and posterior immediately translate into a measure of iegnprogress reflecting the
number of saved bits—a measure of improved data compression

Note also, however, that the naive probabilistic approactiata compression is
unable to discover more general typestgforithmiccompressibility[[104, 34, 37, 73].
For example, the decimal expansionmofooks random and incompressible but isn't:
there is a very short algorithm computing all of yet any finite sequence of digits
will occur in ©'s expansion as frequently as expected ivere truly random, that is,
no simple statistical learner will outperform random gumgsat predicting the next
digit from a limited time window of previous digits. More geral programsearch
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techniques (e.g.| [36, 75, 115,]46]) are necessary to extraatnderlying algorithmic
regularity.

3.4 Zero Sum Reward Games for Compression Progress Revealed
by Algorithmic Experiments (1997)

More recent work[[68, 72] (1997) greatly increased the compenal power of con-
troller and predictor by implementing them as co-evolvsygnmetric, opposing mod-
ules consisting of self-modifying probabilistic prograf@g,/98] written in a universal
programming language [118, 111] allowing for loops, reaamsiand hierarchical struc-
tures. The internal storage for temporary computationallte of the programs was
viewed as part of the changing environment. Each moduledctuggest experiments
in the form of probabilistic algorithms to be executed, arakenconfident predictions
about their effects by betting on their outcomes, wherélihting moneyessentially
played the role of the intrinsic reward. The opposing moddeld reject or accept
the bet in a zero-sum game by making a contrary predictiorcabe of acceptance,
the winner was determined by executing the algorithmic Brpent and checking its
outcome; the money was eventually transferred from theriseagh loser to the con-
firmed winner. Both modules tried to maximize their moneygs rather general RL
algorithm designed for complex stochastic policies [97,(8Bernative RL algorithms
could be plugged in as well). Thus both modules were motivtteliscovetruly novel
algorithmic regularity / compressibility, where the sudtjee baseline for novelty was
given by what the opponent already knew about the world'stitype regularities.

The method can be viewed as system identification througévobition of com-
putable models and tests. In 2005 a similar co-evolutioapproach based on less
general models and tests was implemented by Bongard andri_[(®4].

3.5 Improving Real Reward Intake

Our references above demonstrated experimentally thatésence of intrinsic reward
or curiosity reward actually can speed up the collectioaxtérnalreward.

3.6 Other Implementations

Recently several researchers also implemented variargpoximations of the cu-
riosity framework. Singh and Barto and coworkers focusediementations within
the option framework of RL [5, 104], directly using predastierrors as curiosity re-
wards as in Sectidn 3.1 [57,158,/61] —they actually were thesamho coined the ex-
pressionsntrinsic rewardandintrinsically motivatedrL. Additional implementations
were presented at the 2005 AAAI Spring Symposium on Devetogal Roboticg [9];

compare the Connection Science Special Issue [10].
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4 Visual lllustrations of Subjective Beauty and itsFirst
Derivative Interestingness

As mentioned above (Sectibn B.3), the probabilistic varidiour theory[103] (1995)
was able to explain certain shifts of human visual atter[B@p (2005). But we can also
apply our approach to the complementary probleroarfstructingmages that contain
quickly learnable regularities, arguing again that ther@o fundamental difference
between the motivation of creative artists and passiverebeeof visual art (Section
[2.12). Both create action sequences yielding interestipgts, where interestingness
is a measure of learning progress, for example, based omldtda/e entropy between
prior and posterior (Sectidn 3.3), or the saved number sfrfi#eded to encode the data
(Sectiori1), or something similar (Sect{dn 3).

Here we provide examples of subjective beauty tailored tmdmuobservers, and
illustrate the learning process leading from less to motgestive beauty. Due to
the nature of the present written medium, we have to use Mexaanples instead of
acoustic or tactile ones. Our examples are intended to stim@cypothesis that unsu-
pervisedattentionand thecreativityof artists, dancers, musicians, pure mathematicians
are just by-products of their compression progress drives.

4.1 A Pretty Simple Face with a Short Algorithmic Description

Figure[1 depicts the construction plan of a female face demsi'beautiful’ by some
human observers. It also shows that the essential feat@itbgssdace follow a very
simple geometrical patterh [69] that can be specified by f@mybits of information.
That is, the data stream generated by observing the imagetfsaugh a sequence
of eye saccades) is more compressible than it would be intikerae of such regu-
larities. Although few people are able to immediately see He drawing was made
in absence of its superimposed grid-based explanationt, doosotice that the facial
features somehow fit together and exhibit some sort of reigylaAccording to our
postulate, the observer’s reward is generated by the aaunsor subconscious discov-
ery of this compressibility. The face remains interestingluts observation does not
reveal any additional previously unknown regularitieseit it becomes boring even in
the eyes of those who think it is beautiful—as has been pdiot# repeatedly above,
beauty and interestingness are two different things.

4.2 Another Drawing That Can Be Encoded By Very Few Bits

Figure[2 provides another example: a butterfly and a vase avitower. It can be

specified by very few bits of information as it can be cond&de¢hrough a very simple
procedure or algorithm based on fractal circle pattérng{&ee Figurél3. People who
understand this algorithm tend to appreciate the drawingerti@an those who do not.
They realize how simple it is. This is not an immediate, athothing, binary process
though. Since the typical human visual system has a lot afréspce with circles, most
people quickly notice that the curves somehow fit together iagular way. But few

are able to immediately state the precise geometric plieipnderlying the drawing
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[81]. This pattern, however, is learnable from Figlure 3. €hescious or subconscious
discovery process leading from a longer to a shorter degmnipf the data, or from
less to more compression, or from less to more subjectivelggived beauty, yields
reward depending on the first derivative of subjective bgabat is, the steepness of
the learning curve.

5 Conclusion & Outlook

We pointed out that a surprisingly simple algorithmic pijpde based on the notions
of data compression and data compresgaygressinformally explains fundamen-
tal aspects of attention, novelty, surprise, interestasgncuriosity, creativity, subjec-
tive beauty, jokes, and science & art in general. The cruegdedients of the corre-
spondingformal framework are (1) a continually improving predictor or camgsor
of the continually growing data history, (2) a computableaswee of the compres-
sor's progress (to calculate intrinsic rewards), (3) a re\a@ptimizer or reinforce-
ment learner translating rewards into action sequencescéegh to maximize future
reward. To improve our previous implementations of theggedients (Sectiohl 3),
we will (1) study better adaptive compressors, in particukecent, novel RNNg [94]
and other general but practically feasible methods for nmkredictions([75]; (2) in-
vestigate under which conditions learning progress mesascein be computed both
accurately and efficiently, without frequent expensive pogssor performance evalu-
ations on the entire history so far; (3) study the appliégbilf recent improved RL
techniques in the fields of policy gradients [110, [119,]11&,[B0, 117], artificial
evolution [43[ 20, 21, 19, 22, 23, 24], and othérd [71, 75].

Apart from building improvedrtificial curious agents, we can test the predictions
of our theory in psychological investigations lefimanbehavior, extending previous
studies in this vein[[32] and going beyond anecdotal evidenentioned above. It
should be easy to devise controlled experiments where tgcs must anticipate
initially unknown but causally connected event sequenkkibéing more or less com-
plex, learnable patterns or regularities. The subjectshgilasked to quantify their in-
trinsic rewards in response to their improved predictidsaithe reward indeed strongest
when the predictions are improving most rapidly? Does thenisic reward indeed
vanish as the predictions become perfect or do not improyerame?

Finally, how to test our predictions through studies in sarence? Currently
we hardly understand the human neural machinery. But it iskmewn that certain
neurons seem to predict others, and brain scans show hoaircerain areas light
up in response to reward. Therefore the psychological éxgets suggested above
should be accompanied by neurophysiological studies tlifethe origins of intrinsic
rewards, possibly linking them to improvements of neurabiictors.

Success in this endeavor would provide additional motwatd implement our
principle on robots.
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A Appendix

This appendix is based in part on references$([81, 88].

The world can be explained to a degree by compressing itoléses correspond
to large data compression improvements (found by the giapplication-dependent
compressor improvement algorithm). How to build an ada&péigent that not only
tries to achieve externally given rewards but also to diecawn an unsupervised and
experiment-based fashion, explainable and compressibd@dThe explanations gained
through explorative behavior may eventually help to sobacher-given tasks.)

Let us formally consider a learning agent whose single ldasists of discrete
cycles or time stepg = 1,2,...,7. Its complete lifetimel’ may or may not be
known in advance. In what follows, the value of any time-wagyvariableQ at timet¢
(1 <t < T) will be denoted byQ(t), the ordered sequence of valu@él), ..., Q(t)
by Q(<t), and the (possibly empty) sequer@€l),...,Q(t — 1) by Q(< t). Atany
givent the agent receives a real-valued inp(t) from the environment and executes
a real-valued actiop(t) which may affect future inputs. At times< T its goal is to
maximize future success atility

T

> r(n)

T=t+1

u(t) =E,

h(< t)] : (@)

wherer(t) is an additional real-valued reward input at timé:(¢) the ordered triple
[z(t),y(t), r(t)] (hencer(< t) is the known history up te), andE,, (- | -) denotes the
conditional expectation operator with respect to someiplysanknown distribution

w from a setM of possible distributions. Herg1 reflects whatever is known about
the possibly probabilistic reactions of the environmenbr Example, M may con-
tain all computable distributions [106, 107/ 37] 29]. Thisrpust one life, no need for
predefined repeatable trials, no restriction to Markowderfaces between sensors and
environment, and the utility function implicitly takes cnaccount the expected remain-
ing lifespanE, (T | h(< t)) and thus the possibility to extend it through appropriate
actions|[[79, 82, 80, 92].

Recent work has led to the first learning machines that aretsdl and optimal in
various very general sensés [29] [79, 82]. As mentioned iintiheduction, such ma-
chines can in principle find out by themselves whether cityi@md world model con-
struction are useful or useless in a given environment, @athlto behave accordingly.
The present appendix, however, will assuary@riori that compression / explanation of
the history is good and should be done; here we shall not vaiyout the possibility
that curiosity can be harmful and “kill the cat.” Towardsstlend, in the spirit of our
previous work since 199057, 58,161)59] 160,108 68, 72, 7638/ 87| 89] we split the
reward signat(t) into two scalar real-valued component$t) = g(rext(t), rint (t)),
whereg maps pairs of real values to real values, ey@a, b) = a + b. Hererq,.(t)
denotes traditionadxternalreward provided by the environment, such as negative re-
ward in response to bumping against a wall, or positive rdwaresponse to reaching
some teacher-given goal state. But for the purposes of #peipwe are especially
interested inr;,+(t), the internal or intrinsic ocuriosity reward, which is provided
whenever the data compressor / internal world model of tlemignproves in some
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measurable sense. Our initial focus will be on the case(t) = 0 for all valid
t. The basic principle is essentially the one we publishedreein various variants
[57,58[6150, 60, 108, 68,172,176, 81] B8, 87]:

Principle 1 Generate curiosity reward for the controller in responsérprovements
of the predictor or history compressor.

So we conceptually separate the goal (explaining / comimgedise history) from the
means of achieving the goal. Once the goal is formally spetifi terms of an algo-
rithm for computing curiosity rewards, let the controlieréinforcement learning (RL)
mechanism figure out how to translate such rewards intorasgguences that allow
the given compressor improvement algorithm to find and éxpleviously unknown
types of compressibility.

A.1 Predictors vs Compressors

Much of our previous work on artificial curiosity was predlict-oriented, e. g.,[57,
58,61/59, 60, 108, 68, 72,176]. Prediction and compress®nlasely related though.
A predictor that correctly predicts manyr), given historyh(< 7), for1 < 7 < ¢, can
be used to encode(< ¢t) compactly. Given the predictor, only the wrongly predicted
x(7) plus information about the corresponding time stepse necessary to reconstruct
historyh(<t), e.g., [63]. Similarly, a predictor that learns a probapitlistribution of
the possible next events, given previous events, can beaisffitiently encode obser-
vations with high (respectively low) predicted probapility few (respectively many)
bits [28,[95], thus achieving a compressed history reptasien. Generally speaking,
we may view the predictor as the essential part of a progrtrat re-computes(<t).

If this program is short in comparison to the raw data ¢), thenh(< t) is regular
or non-random([106, 34, 37, 73], presumably reflecting dsdeenvironmental laws.
Thenp may also be highly useful for predicting future, yet unseén) for = > t.

It should be mentioned, however, that the compressor-gtspproach to predic-
tion based on the principle of Minimum Description Lengthi\) [34,[112 113, 54,
37] does not necessarily converge to the correct predigtismuickly as Solomonoff's
universal inductive inference [106, 107, 37], althoughhbeppproaches converge in the
limit under general conditions [52].

A.2 Which Predictor or History Compressor?

The complexity of evaluating some compresgon historyh(< ¢) depends on both
and its performance measute Let us first focus on the former. Givenone of the
simplestp will just use a linear mapping to predigtt + 1) from z(¢) andy(t + 1).
More complexp such as adaptive recurrent neural networks (RNN)|[115] B30,
62,4726/ 98, 77, 78] will use a nonlinear mapping and pbssite entire history
h(< t) as a basis for the predictions. In fact, the first work on aiéficuriosity [61]
focused on online learning RNN of this type. A theoreticalptimal predictor would
be Solomonoff's above-mentioned universal induction se&L06/ 107, 37].

18



A.3 Compressor Performance Measures

At any timet (1 < ¢ < T), given some compressor programable to compress
history h(< t), let C(p, h(< t)) denotep’s compression performance &< ¢). An
appropriate performance measure would be

wherel(p) denotes the length gf, measured in number of bits: the shorterthe
more algorithmic regularity and compressibility and potalbility and lawfulness in
the observations so far. The ultimate limit f6§(p, h(< t)) would be K*(h(< t)),

a variant of the Kolmogorov complexity éf(< ¢), namely, the length of the shortest
program (for the given hardware) that computes an outpuirsgawith ~(< t) [1086,

34,37[73].

A.4 Compressor Performance Measures Taking Time Into Acconut

C;(p, h(<t)) does not take into account the timép, h(<t)) spent byp on computing
h(<t). An alternative performance measure inspired by concdmiptonal universal
searchl[[38, 75] is

Cir(p, h(<t)) = U(p) + log 7(p, h(<1)). (4)

Here compression by one bit is worth as much as runtime rexdtuby a factor of%.
From an asymptotic optimality-oriented point of view thisdne of the best ways of
trading off storage and computation time|[B6] 75].

A.5 Measures of Compressor Progress / Learning Progress

The previous sections only discussed measures of compmformance, but not of
performancemprovementwhich is the essential issue in our curiosity-oriented con-
text. To repeat the point made abovEhe important thing are the improvements of
the compressor, not its compression performance peae. curiosity reward in re-
sponse to the compressor’s progress (due to some apphigiioendent compressor
improvement algorithm) between timeandt + 1 should be

rint(t +1) = f[C(p(t), h(<t+ 1))7 C(p(t + 1)7 h(<t+ 1))]5 (5)

wheref maps pairs of real values to real values. Various alteragtiegress measures
are possible; most obvious Ea,b) = a — b. This corresponds to a discrete time
version of maximizing the first derivative of subjective@abmpressibility.

Note that both the old and the new compressor have to be testdte same data,
namely, the history so far.

A.6 Asynchronous Framework for Creating Curiosity Reward

Let p(t) denote the agent’s current compressor program at#jmg) its current con-
troller, and do:
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Controller: Atanytimet (1 <t < T)do:

1.
2.
3.

Lets(t) use (parts of) historji(< t) to select and execuigt + 1).
Observer(t + 1).

Check if there is non-zero curiosity rewarg, (¢t + 1) provided by the separate,
asynchronously running compressor improvement algor{gea below). If not,
setr;,:(t +1) = 0.

. Let the controller’s reinforcement learning (RL) aldbm useh(< ¢ + 1) in-

cludingr;,,:(t + 1) (and possibly also the latest available compressed veo$ion
the observed data—see below) to obtain a new contreftet 1), in line with
objective [2).

Compressor: Setp,,.., equal to the initial data compressor. Starting at time leatp
forever until interrupted by death at tinfe

1.
2.

4.
5.

Setpoia = Prew; g€t current time stepand setiyq = h(<1t).

Evaluate,;q 0nh,q, to obtainC (pord, hoa) (SectioAB). This may take many
time steps.

. Let some (application-dependent) compressor improweaigorithm (such as

a learning algorithm for an adaptive neural network prexfjctise’,;q to ob-
tain a hopefully better compressey.., (such as a neural net with the same size
but improved prediction capability and therefore improeethpression perfor-
mance [[95]). Although this may take many time steps (andcbel partially
performed during “sleep”)p.., May not be optimal, due to limitations of the
learning algorithm, e.g., local maxima.

Evaluate,,c., 0N hopq, to 0btainC' (ppew, hoid). This may take many time steps.

Get current time step and generate curiosity reward

Tint (7—) = f[C(polda hold)a C(pnewa hold)]7 (6)

e.g..f(a,b) = a — b; see Section Al5.

Obviously this asynchronuous scheme may cause long teirgeleys between con-
troller actions and corresponding curiosity rewards. Thiy impose a heavy burden
on the controller’'s RL algorithm whose task is to assign itredpast actions (to in-
form the controller about beginnings of compressor evangirocesses etc., we may
augment its input by unique representations of such evehisyertheless, there are
RL algorithms for this purpose which are theoretically ol in various senses, to be
discussed next.
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A.7 Optimal Curiosity & Creativity & Focus of Attention

Our chosen compressor class typically will have certainmatational limitations. In
the absence of any external rewards, we may defptenal pure curiosity behavior
relative to these limitations: At timethis behavior would select the action that maxi-

mizes
T

Z Tint (T)

T=t+1

u(t) = E,

h(gt)] . (7)

Since the true, world-governing probability distributipnis unknown, the resulting
task of the controller’s RL algorithm may be a formidable ores the system is re-
visiting previously incompressible parts of the enviromtesome of those will tend
to become more subjectively compressible, and the cornepg curiosity rewards
will decrease over time. A good RL algorithm must somehovedetnd thempredict
this decrease, and act accordingly. Traditional RL alhari [33], however, do not
provide any theoretical guarantee of optimality for su¢bations. (This is not to say
though that sub-optimal RL methods may not lead to successriain applications;
experimental studies might lead to interesting insights.)

Let us first make the natural assumption that the compressuatisuper-complex
such as Kolmogorov’s, that is, its output ang,(¢) are computable for all. Is there
a best possible RL algorithm that comes as close as any otheatimizing objective
(@)? Indeed, there is. Its drawback, however, is that it tscomputable in finite time.
Nevertheless, it serves as a reference point for defining istaehievable at best.

A.8 Optimal But Incomputable Action Selector

There is an optimal way of selecting actions which makes fi€tomonoff’s theo-
retically optimal universal predictors and their Bayedearning algorithms [106, 107,
37,129/ 30]. The latter only assume that the reactions of the@ment are sampled
from an unknown probability distribution contained in a setM of all enumerable
distributions—compare text after equatiéh (2). More selyi, given an observation
sequence(<t) we want to use the Bayes formula to predict the probabilithefnext
possibleg(t + 1). Our only assumption is that there exists a computer proghatn
can take any(<t) as an input and compute ispriori probability according to the
prior. In general we do not know this program, hence we pteding a mixture prior

instead:
£lg(=1) = Zwiui(q(ét)), (8)

a weighted sum odll distributionsp; € M, i = 1,2,..., where the sum of the con-
stant positive weights satisfi®s, w; < 1. This is indeed the best one can possibly do,
in a very general sense [107,/29]. The drawback of the scheiteincomputability,
sinceM contains infinitely many distributions. We may increasettieoretical power
of the scheme by augmentilgl by certain non-enumerable but limit-computable dis-
tributions [73], or restrict it such that it becomes comlga e.g., by assuming the

world is computed by some unknown but deterministic compptegram sampled
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from the Speed Priof [74] which assigns low probability teienments that are hard
to compute by any method.

Once we have such an optimal predictor, we can extend it bydtly including
the effects of executed actions to define an optimal actiecses maximizing future
expected reward. At any time Hutter's theoretically optimal (yet uncomputable) RL
algorithm Aixi [29] uses an extended version of Solomonoff’s predictidmeste to
select those action sequences that promise maximal fudward up to some horizon
T, given the current data(<t¢). Thatis, in cycleg + 1, AixI selects as its next action
the first action of an action sequence maximizfagredicted reward up to the given
horizon, appropriately generalizing ed.] (8).1xA uses observations optimally [29]:
the Bayes-optimal policy® based on the mixturgis self-optimizing in the sense that
its average utility value converges asymptotically for;ae M to the optimal value
achieved by the Bayes-optimal poligy which knowsy in advance. The necessary
and sufficient condition is thatt admits self-optimizing policies. The poligy is
also Pareto-optimal in the sense that there is no otherypypiédding higher or equal
value inall environments € M and a strictly higher value in at least ohel[29].

A.9 A Computable Selector of Provably Optimal Actions

A1IXI above needs unlimited computation time. Its computablamaAixi (t,1) [29]
has asymptotically optimal runtime but may suffer from aéuagnstant slowdown. To
take the consumed computation time into account in a gergpimal way, we may
use the recent Godel machings|[79,/82/ 80, 92] instead. fEpegsent the first class of
mathematically rigorous, fully self-referential, setfyproving, general, optimally effi-
cient problem solvers. They are also applicable to the pratdmbodied by objective

@.

The initial softwareS of such a Godel machine contains an initial problem solver,
e.g., some typically sub-optimal methad [33]. It also camgan asymptotically opti-
mal initial proof searcher based on an online variant of hisvniversal Searcli3g],
which is used to run and teptoof techniquesProof techniques are programs written
in a universal language implemented on the Godel machitiews$. They are in prin-
ciple able to compute proofs concerning the system’s owréuperformance, based
on an axiomatic systetd encoded irS. A describes the formaitility function, in our
case eq.[{7), the hardware properties, axioms of arithraatigprobability theory and
data manipulation etc, anfl itself, which is possible without introducing circularity
[©92].

Inspired by Kurt Godel's celebrated self-referentiahfimias (1931), the Godel ma-
chine rewrites any part of its own code (including the praedreher) through a self-
generated executable program as soon ddritgersal Searclvariant has found a proof
that the rewrite isisefulaccording to objectivé {7). According to the Global Optimal
ity Theorem[[79], 82, 80, 92], such a self-rewrite is globalbtimal—no local maxima
possible!—since the self-referential code first had to pritnat it is not useful to con-
tinue the search for alternative self-rewrites.

If there is no provably useful optimal way of rewritighat all, then humans will not
find one either. But if there is one, théhtself can find and exploit it. Unlike the previ-
ousnon-self-referential methods based on hardwired proof seascf29], Godel ma-
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chines not only boast an optimaider of complexity but can optimally reduce (through
self-changes) any slowdowns hidden by &@-notation, provided the utility of such
speed-ups is provable. Compérel[83,(86, 85].

A.10 Non-Universal But Still General and Practical RL Algorithms

Recently there has been substantial progress in RL algusithat are not quite as uni-
versal as those above, but nevertheless capable of learaipgeneral, program-like
behavior. In particular, evolutionary methods|[53] 199, &xih be used for training Re-
current Neural Networks (RNN), which are general computétany approaches to
evolving RNN have been proposed [40, 122,]121, 45[ 39| [1(3, @8e particularly
effective family of methods uses cooperative coevolutmis@arch the space of net-
work componentsreuronsor individualsynapsesinstead of complete networks. The
components areoevolveddy combining them into networks, and selecting those for
reproduction that participated in the best performing oeks [43] 20}, 211, 19, 22, 24].
Other recent RL techniques for RNN are based on the concepolafy gradients
[110,[119/118, 56, 100, 117]. 1t will be of interest to evakaariants of such control
learning algorithms within the curiosity reward framework
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Figure 1: Previously published construction plan| [69, 88ademale face (1998).
Some human observers report they feel this face is ‘bedutilthough the drawing
has lots of noisy details (texture etc) without an obviousrsdescription, positions
and shapes of the basic facial features are compactly ebigottaough a very sim-
ple geometrical scheme, simpler and much more precise ticerd facial proportion
studies by Leonardo da Vinci and Albrecht Direr. Hence thage contains a highly
compressible algorithmic regularity or pattern describddy few bits of information.
An observer can perceive it through a sequence of attenyigar@vements or sac-
cades, and consciously or subconsciously discover the iessipility of the incoming
data stream. How was the picture made? First the sides ofaeeuere partitioned
into 24 equal intervals. Certain interval boundaries were coratett obtain three ro-
tated, superimposed grids based on lines with sldpeer +1/23 or £23 /1. Higher-
resolution details of the grids were obtained by iterayiv@lecting two previously
generated, neighboring, parallel lines and inserting a megvequidistant to both. Fi-
nally the grids were vertically compressed by a factot ef 2=%. The resulting lines
and their intersections define essential boundaries angeshaf eyebrows, eyes, lid
shades, mouth, nose, and facial frame in a simple way thdhi®os from the con-
struction plan. Although this plan is simple in hindsightyvas hard to find: hundreds
of my previous attempts at discovering such precise matoe®geen simple geome-

tries and pretty faces failed. 33



Figure 2: Image of a butterfly and a vase with a flower, repdritem Leonardo
[67,[81]. An explanation of how the image was constructedvalimgit has a very short
description is given in Figuig 3.
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Figure 3: Explanation of how Figufé 2 was constructed thhoagrery simple algo-
rithm exploiting fractal circles [67]. The frame is a cirgits leftmost pointis the center
of another circle of the same size. Wherever two circles abésjze touch or intersect
are centers of two more circles with equal and half size,aethely. Each line of the
drawing is a segment of some circle, its endpoints are wherkes touch or intersect.
There are few big circles and many small ones. In generalsithedler a circle, the
more bits are needed to specify it. The drawing is simple (@@ssible) as it is based
on few, rather large circles. Many human observers repattttiey derive a certain
amount of pleasure from discovering this simplicity. Thesetver's learning process
causes a reduction of the subjective complexity of the gadiding a temporarily high
derivative of subjective beauty: a temporarily steep legycurve. (Again | needed a
long time to discover a satisfactory and rewarding way ofigi$iactal circles to create
a reasonable drawing.)
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