Quantum Physics
[Submitted on 27 Jul 2021 (v1), last revised 10 Oct 2024 (this version, v3)]
Title:Mitigating noise in digital and digital-analog quantum computation
View PDF HTML (experimental)Abstract:Noisy Intermediate-Scale Quantum (NISQ) devices lack error correction, limiting scalability for quantum algorithms. In this context, digital-analog quantum computing (DAQC) offers a more resilient alternative quantum computing paradigm that outperforms digital quantum computation by combining the flexibility of single-qubit gates with the robustness of analog simulations. This work explores the impact of noise on both digital and DAQC paradigms and demonstrates DAQC's effectiveness in error mitigation. We compare the quantum Fourier transform and quantum phase estimation algorithms under a wide range of single and two-qubit noise sources in superconducting processors. DAQC consistently surpasses digital approaches in fidelity, particularly as processor size increases. Moreover, zero-noise extrapolation further enhances DAQC by mitigating decoherence and intrinsic errors, achieving fidelities above 0.95 for 8 qubits, and reducing computation errors to the order of $10^{-3}$. These results establish DAQC as a viable alternative for quantum computing in the NISQ era.
Submission history
From: Paula García-Molina [view email][v1] Tue, 27 Jul 2021 17:30:23 UTC (370 KB)
[v2] Wed, 21 Dec 2022 11:30:25 UTC (1,638 KB)
[v3] Thu, 10 Oct 2024 14:41:57 UTC (969 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.