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Abstract

In December 2015, a bounty emerged to establish both reliable
communication and secure transfer of value between the Dogecoin and
Ethereum blockchains. This prized “Dogethereum bridge” would allow
parties to “lock” a DOGE coin on Dogecoin and in exchange receive a
newly minted WOW token in Ethereum. Any subsequent owner of the
WOW token could burn it and, in exchange, earn the right to “unlock”
a DOGE on Dogecoin.

We describe an efficient, trustless, and retrofitting Dogethereum
construction which requires no fork but rather employs economic col-
lateral to achieve a “lock” operation in Dogecoin. The protocol relies on
bulletproofs, Truebit, and parametrized tokens to efficiently and trust-
lessly relay events from the “true” Dogecoin blockchain into Ethereum.
The present construction not only enables cross-platform exchange but
also allows Ethereum smart contracts to trustlessly access Dogecoin.
A similar technique adds Ethereum-based smart contracts to Bitcoin
and Bitcoin data to Ethereum smart contracts.

∗This version, updated in 2019, includes minor changes and corrections.
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1 The bridge over time

“It appears that we desire a world in which interoperable altchains
can be easily created and used, but without unnecessarily frag-
menting markets and development.” [39]

–Blockstream, 2014

Since the early days of Nakamoto consensus [65], the ideal of trustless
agreement across blockchains has captured imaginations and inspired in-
novation. The intrigue of joint consensus, however, does not diminish the
marvel of universal concurrence over a single blockchain. The Ethereum
community, despite its decentralized structure and multi-billion dollar valu-
ation, has largely agreed over time on who owns each ether coin (ETH) [18].
In contrast, the blockchain community to date has not leveraged Ethereum’s
reliable consensus for bookkeeping ownership of dogecoins (DOGE), a set of
coins which traditionally change hands via an independent network called
Dogecoin [10].

The earliest designs of a two-way peg, or systematic transfer of assets
back-and-forth between consensus-disjoint blockchains, developed indepen-
dently from smart contracts, however these two concepts were pioneered
concurrently within the context of cryptocurrencies [23, 39]. Ethereum’s
smart contract culture, which catalyzed a new class of two-way peg con-
structions, has not only influenced but institutionalized thinking on this
topic. Indeed, at the end of 2015, a substantial ETH bounty emerged to
build a bridge between Dogecoin and Ethereum [9, 83]. This bridge became
known as Dogethereum [76].

Let us muse upon the manifest amalgamation of Dogecoin and Ethereum.
While cultural synergies between these two outgoing, viral communities may
have brought their constituents together, one can view the Dogethereum
phenomenon entirely as a technical challenge peculiar to this combination
of networks. Dogecoin, which began as a joke at the hands of of Billy
Markus and Jackson Palmer, quickly turned into a cultural meme featuring
an unnamed shiba inu [10, 15], an idiosyncratic creole language [62], a DOGE
tip bot [68], and the moon [48, 89]. From its outset, Dogecoin was no
stranger to contests or fundraisers. Dogecoin organizers received dozens of
submissions for the Dogecoin’s incentivized video contest [14] including its
distinguished winner [89], and backed Jamaica’s Olympic bobsled team in
2014 [47].

On the technical front, Dogecoin began as a fork of Luckycoin, which in
turn was a fork of Litecoin [48]. Like Litecoin, Dogecoin uses a memory-hard
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proof-of-work based on scrypt [38] which dissuades participation through
Bitcoin mining hardware due to that hardware’s inefficiency. By September
2014 the network had begun merge mining with Litecoin [54], meaning that
miners running Dogecoin’s mining client could simultaneously mine Lite-
coin blocks. Over the following year, Dogecoin’s core developers became
scarce [12]. Without technical leadership, Dogecoin’s mining protocol essen-
tially froze despite abundant and dedicated support of Dogecoin enthusiasts.

Dogecoin’s memory-hard scrypt proof-of-work naturally drew the atten-
tion of Ethereum’s developer community, whose increasing demands on com-
puting resources pushed the underlying network to its limits. Ethereum’s
gas limit quantifies the amount of space and computation that the network
can perform per block and places the task of checking a Dogecoin proof-of-
work well outside the reach of smart contracts. Buterin calculated that a
näıve implementation for verifying a single Dogecoin proof-of-work would
require roughly 370 million gas distributed over the course of 118 transac-
tions [46], and Guindzberg’s April 2018 estimate placed the gas cost of sim-
ply relaying all Dogecoin headers to Ethereum at 10,000 USD per day [40].
As increases to Ethereum’s gas limit pose security risks to the network’s
underlying consensus [60], checking Dogecoin’s proof-of-work embodies a
fundamental challenge for Ethereum.

On the surface, then, Dogethereum seems to call for a trifecta of inno-
vations.

1. Consensus. Formally, how does Ethereum receive a message that
DOGE has been transferred under its control and in accordance with
Dogecoin’s consensus? Moreover, how does Dogecoin know when the
DOGE is transferred back? Both Dogecoin and Ethereum’s incen-
tivized mining protocols reinforce myopic views of their respective
blockchains.

2. Computation. As a minimal prerequisite, Ethereum must be able to
authenticate messages describing Dogecoin events. Dogecoin itself re-
lies on scrypt proof-of-work for this purpose, which means that Do-
gethereum transfers the burden of scrypt verification onto Ethereum.
Teutsch and Reitwießner introduced Truebit [31, 79] explicitly to ad-
dress this problem.

3. Politics. How can Dogethereum syntactically express and securely en-
force “locked” DOGE transfer given Dogecoin’s restrictive, Bitcoin-like
scripting language? Adding a new opcode to Dogecoin requires coop-
eration on the part of Dogecoin miners, Dogecoin’s core developers,
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Figure 1: Artist rendering of Dogethereum [2].

and possibly even Litecoin miners who incidentally mine Dogecoin as
well. Indeed, any change in consensus procedure requires a so-called
“fork” wherein miners each voluntarily update their local clients.

By 2017, the stars had aligned on Items 2 and 3 above. In order to gain
the attention of these parties, Truebit introduced the #ArtProject [2] to cre-
ate a physical manifestation of Dogethereum in the form of a 40-foot Klein
bottle teaming with shiba inus. With the Truebit protocol implementation
[32] already underway and a massive Dogethereum bounty [9, 83] which
could potentially finance the #ArtProject, Dogethereum seemed within
reach. As a proof-of-concept, Truebit’s development team munged Chrsitian
Reitwießner’s scrypt verifier, a hand-crafted tool for playing Truebit-style
verification games [79] for scrypt, into a more comprehensive Truebit Lite
client [36] based on altruistic verifiers. In February 2018, Truebit publicly
demonstrated [52] Truebit Lite alongside Coinfabrik and Oscar Guindzberg’s
relay prototype, won part of the Dogethereum bounty for their efforts, and
committed its entire share of the bounty to the #ArtProject [2]. Contrary to
press statements at that time, no DOGE were actually transferred between
Dogecoin and Ethereum during this initial demo.

Our contributions. We describe a “bulletproof” two-way peg between
Dogecoin and Ethereum with a cryptoeconomic mechanism (Section 1.1)
that circumvents the need for either a Dogecoin or Ethereum fork. Our
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2014: Dogecoin crowdfunds $30,000 for Jamaica’s Olympic bobsled
team [47].

2015: Ethereum is born. Dogethereum challenge inspires conception
of Truebit [31, 79].

2016: Christian Reitwießner commences scrypt verifier [36].
Dogethereum bridge bounty [83] peaks at 6492 ETH [9].

2017: /r/dogecoin & /r/ethereum merge for April Fool’s Day [82]
following “Dogether” announcement [76].

2018: Jessica Angel designs physical manifestation of bridge [2].
scrypt verifier is wrapped into Truebit Lite client [36].

Figure 2: Laconic timeline of Dogethereum.

construction avoids dependencies on politics and distinguished nodes and in-
stead assumes only rational actors (Section 2) atop a simple relay (Section 3).
We argue that the construction (Section 4) is sufficiently secure (Section 5)
and efficient (Section 6) to support practical use.

1.1 In a nutshell

Let us explore the basic operations and applications of our present two-way
peg. As Dogecoin and Ethereum maintain independent blockchains, each of
whose public ledgers respectively track ownership of native DOGE and ETH
coins, we must first establish what it means to migrate DOGE coins onto
Ethereum. DOGE transferred onto the Ethereum blockchain takes the form
of a WOW token, a coin simulated via smart contract-based ledger named
in the spirit of Dogecoin’s creole. WOW tokens do not follow Ethereum’s
ERC-20 token standard [16] but rather extend the functionality of this form
(see Section 1.2 for further details).

We shall introduce the system’s agents in Section 2 and interact with
them more formally in Section 4, but for now we shall simply rely on sug-
gestive names as indicators of roles. The system does not attempt to manage
identities, and as such, a single entity may control multiple agents with dis-
tinct names. In particular, the Hodler may be distinct, or even unknown to
the Crosser in the sequence of events below.

The present system introduces neither a “lock” opcode nor a preset Do-
gecoin address for Crossers who wish to send their DOGE to Ethereum, but
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rather allows any Operator who deposits sufficient ETH collateral into a
Bridge Contract to facilitate a transfer in exchange for a fee. A rogue Op-
erator who moves “locked” DOGE forfeits his ETH collateral. We refer to
this cryptoeconomic incentive as a collateralized peg and briefly trace the
lifecycle of a DOGE through this construction.

1. An Operator deposits ETH into a Bridge [smart] Contract in Ether-
eum.

2. Any Crosser can then “lock” DOGE by sending it into the Operator’s
Dogecoin address.

3. A Relayer transmits this “lock” transaction to the bridge contract
which in turn mints WOW tokens, in Ethereum, to the Crosser above.

4. When a Hodler burns WOW, provably and irretrievably destroying it,

(a) the Hodler receives “locked” DOGE from an Operator, and

(b) the Bridge Contract refunds the Operator’s ETH deposit.

In case the designated Operator fails to “unlock” the DOGE in Step 4, the
Hodler collects the Operator’s ETH collateral from the Bridge Contract.
The idea for a collateralized peg was, to the best knowledge of this author,
first proposed in a conversation with Sunny Aggarwal and Jim Posen in
mid-December, 2017 and shortly thereafter documented in an unpublished
manuscript by Sina Habibian [53].

Utility. Unlike two-way peg constructions which introduce new opcodes,
the collateralized peg has the advantage of being retrofitting, making it
a relatively frictionless way to bring communities together. Let us first
consider the two-way peg’s underlying relay (Section 3) in isolation. Simply
conveying data across blockchains solves a special case of the so-called data
availability problem [77]. Indeed the relay permits Ethereum smart contracts
to seamlessly access data stored on Dogecoin’s blockchain. Thus one can
view the collateralized peg itself, which permits cross-chain transfer of value,
as a particularly interesting application of the underlying relay.

Dogethereum permits WOW holders to use their tokens in Ethereum
smart contracts, thereby adding a kind of smart contract functionality to
Dogecoin. An ecosystem of two-way pegs gives rise to some interesting
applications. A further two-way peg between Bitcoin and Ethereum, for ex-
ample, would permit use of tokenized Bitcoins in smart contracts and hence
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one could trustlessly execute exchanges and interactions between “tokenized
bitcoin” and WOW. With two-way pegs between other systems supporting
smart contracts, one no longer has to commit to operating over a single,
“centralized” decentralized platform like Ethereum, but can catapult tokens
onto other blockchains.

Tokens initialized on Ethereum could move elsewhere across a two-way
peg oriented in the reverse direction, thereby allowing new blockchains to
benefit from existing network effects and communities. Token holders on
the new blockchain may freely transfer tokens acquired on the new block-
chain back to Ethereum, even before a market for the blockchain’s native
coin(s) has been established. In case a token crosses from Blockchain A to
Blockchain B to Blockchain C, and then completes a circuit back to A, each
individual smart contract on Blockchain A can decide how to handle the
returning version of the tokens.

Open problems. The security of the relay in the present construction re-
lies upon specific features of Nakamoto consensus. An interesting direction
for further work would be to design a two-way peg targeting another kind
of consensus. For example one could view a two-way peg between Ether-
eum and a high-throughput, sharding-based protocol, like Zilliqa [35, 75],
as an alternative to using state channels for micropayments [19, 26, 49, 63],
although the limited expressibility of Zilliqa’s smart contract language com-
plicates matters. In a similar vein, one might like to securely import data
from a high-volume, immutable database like BigChainDB [3] for use in
smart contracts. Building a relay from a non-Nakamoto consensus based
system, like Algorand [1], Dfinity [8], Tezos [29], Thundercore [30], PHAN-
TOM [73], or a collateralized peg from a privacy-enhanced blockchain like
Zcash [34] or Monero [22] offer additional technical challenges. Moelius’s
Ethereum Input Bus [37, 55], when adapted to support ledgers and logs
which guarantee data availability, may offer a useful data verification tool
for securely extracting external bits of information in this context.

1.2 Ingredients

We describe the (not-so) secret sauces which combine to yield Dogethereum.
First, we introduce the notion of parametrized token which extends the ERC-
20 [16] token standard. Parametrized tokens shape the incentives for Do-
gethereum’s collateralized peg, while Truebit and bulletproofs (see below)
constitute the core of the relay which conveys Dogecoin events onto Ether-
eum.
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Parametrized tokens. The utility of a two-way peg between Dogecoin
and Ethereum could increase the value of DOGE, which in turn could render
an Operator’s ETH collateral insufficient relative to its “locked” DOGE. In
order to make the bridge robust against changes in exchange rates, we create
a separate WOW token for each possible exchange rate, each indexed by a
positive, rational number, i.e.

WOW[1],WOW[2],WOW[1/2],WOW[4],WOW[1/4], . . . .

A parametrized token, then, is an ERC-20 token with quantitative param-
eter(s) attached to it. In the case of WOW, the parameter reflects the
maximum “safe” exchange rate with sufficient ETH backing. Parametrized
tokens differ from the emerging non-fungible ERC-721 standard [67] in
that parametrized tokens with identical parameters are all interchangeable
whereas ERC-721 assumes that each token is distinct. When clear from
context or when the discussion does not involve exchange rates, we shall
informally refer to WOW[y] tokens as “WOW” without specifying the pa-
rameter y explicitly.

Inevitably, when the value of a currency decreases relative to another,
some party must bear this change. A Hodler holding WOW is free to ex-
change it for DOGE at any moment and, hence justly absorbs WOW’s price
upside gain as well as its downside. Operators, on the other hand, accept
some ETH illiquidity while keeping custody of “locked” DOGE in exchange
for obtaining a front-loaded crossing fee.

We shall observe, via a series of invariants (Section 5.1), that the two-
way peg maintains balance, and hence liquidity, between the quantity of
“locked” DOGE and the WOW[y] in circulation, so long as the “true” value
of 1 ETH remains above y. In case the ETH exchange rate drops below
this threshold, the protocol does not guarantee such balance; Hodlers must
exchange their WOW[y] for DOGE before this happens. On the flip side,
Operators can, at any moment, keep their “locked” DOGE at the cost of
forfeiting ETH collateral. We shall introduce a further pair of token param-
eters for deposits in Section 5.3. Zamyatin, Harz, Lind, Panayiotou, Gervais
and Knottenbelt concurrently developed a collateralized, two-way peg con-
struction which mitigates exchange rate fluctuations without parameterized
tokens and instead relies on a designated price oracle [87].

Bulletproofs. Dogethereum must maintain an accurate record of “locks”
that have occurred on the “true” Dogecoin blockchain. The Bridge Contract
democratically permits anyone to update this record, however each update
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must pass by unanimous consensus. In case of a dispute, the active Relayer
who posted the update must provide a proof of its correctness. We use bul-
letproofs to succinctly prove validity of Dogecoin proof-of-work, a non-trivial
task [40, 46], and thereby achieve a space-efficient, non-interactive relay en-
forcement on Ethereum. We further reduce space and time requirements by
using batch verification techniques to quickly verify entire chains. A bullet-
proof [6, 45] is an efficient certificate that a committed arithmetic circuit is
satisfiable. The size of a bulletproof, as noted in the precursor work [44], is
only logarithmic in the circuit size n, while proof generation and verification
run times are asymptotically linear in n. Bulletproof implementations exist
and are ready for use [20, 50].

Related proof systems for verifiable computing include SNARKS [21, 43]
and STARKS [28, 42]. Compared to SNARKS, which require a trusted
setup [85, 88], and STARKS, whose proof size starts at 200 kB and whose
prover memory requirements are especially high for memory-hard scrypt [45],
bulletproofs are relatively efficient and avoid trusted setup [72]. While each
of these proof systems showcase privacy features, we remark that Dogeth-
ereum does not involve any use of zero-knowledge.

Truebit. Truebit [31, 79] is an on-chain, pay-per-use, computation oracle
which trustlessly circumvents Ethereum’s gas limit. The present two-way
peg construction uses Truebit to verify bulletproofs. We shall treat Truebit
as a black box.

1.3 Related work

Diverse ideas on two-way pegs have surfaced over the years with various
advantages and tradeoffs. As we view this work in the context of exist-
ing literature, let us keep in mind that our primary aim is to fully specify
a retrofitting two-way peg composed of rational and Byzantine agents, as
opposed to reputation-based ones.

An atomic swap is a cross-chain coin exchange protocol between two
parties where either both successfully receive each other’s coins or neither
of them do. Atomic swaps go hand-in-hand with Dogethereum because
they facilitate access to WOW and hence add liquidity to the system. In-
deed they offer an alternative way to trustlessly exchange DOGE for WOW
without the complications of participating in Dogethereum itself. While
traditional atomic swaps require each participant to explicitly find a trad-
ing partner prior to executing the swap [80], recent constructions may add
liquidity through reserves [7]. As we shall see, Dogethereum requires no
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pre-designation of a trading partner. Unlike two-way pegs, however atomic
swaps do not transfer data or consensus across blockchains.

One way to achieve a two-way peg is for one chain to adapt a consen-
sus mechanism which treats the other chain’s consensus as authoritative. If
Dogethereum were to follow this model, Dogecoin might introduce a hard
fork with new opcodes for “lock” and “unlock” and Dogecoin miners would
agree to monitor Ethereum for WOW that gets burned. See [27, 58] and
[39] for more detailed examples of such sidechain constructions which rely
on simplified payment verification (a.k.a SPV proofs) [66]. Kiayias, Miller,
and Zindros recently introduced a concise form of SPV proofs called “Non-
interactive proofs of proof-of-work” (NIPoPoW) [24, 56] which leverage the
expected existence of superblocks [64], blocks whose proofs-of-work satisfy
higher hash difficulty. We remark that using NIPoPoWs in a Dogethereum
construction would require a Dogecoin fork and entail further design con-
siderations.

One can realize a forkless two-way peg by appealing to external gover-
nance. A federated peg, for example, appoints a set of addresses with the
authority to lock, unlock, and perhaps even mint currency. Users of a fed-
erated peg trust the parties holding these addresses to follow the designated
protocol honestly. The assumption that say, k out of n, of the authorities
will not collude may, in practice, suffice based on geographic, political, and
reputational considerations. RSK employed this technique, which they call
“multi-sig federation,” in their 2-way peg with Bitcoin [27]. Their construc-
tion also uses a drivechain in which miners of one network vote on the locks
of the other. In a drivechain scenario, Ethereum miners might observe the
Dogecoin blockchain and indicate in their blocks whether or not each DOGE
is locked, and the managing Ethereum smart contract would mint a WOW
once confirmed through a threshold of votes. This construction relies on
honest participation of miners, and without a formal fork on Ethereum to
incentivize correct behavior, miners might become lazy about participating
in the drivechain or susceptible to bribes. Polkadot [25, 86] offers an alterna-
tive method for connecting blockchains by allowing participant networks to
delegate consensus via a Relay Chain. Presumably a Polkadot-style bridge
between Dogecoin and Ethereum would involve third-party consensus from
the Relay Chain. The Cosmos Hub [57] follows a similar approach.

BTC Relay [4] was an early experiment by Consensys and Ethereum
which incentivized participants to convey Bitcoin block headers to a smart
contract, thereby enabling SPV verification of Bitcoin events in Ethereum.
This methodology allows Bitcoin transactions to trigger events in Ether-
eum but falls short of being a two-way peg as it does not transfer control
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of value across blockchains. In contrast to this mono-directional scheme,
Peace Relay [59] bridges Ethereum and Ethereum Classic in a bi-directional
manner. This construction harnesses the smart contract functionality in
both blockchains in order to achieve a two-way peg. Peace Relay uses the
efficient Ethash verification technique introduced in Smartpool [61] to check
proof-of-work from each of these blockchains without appealing to Truebit.
BTC Relay and Peace Relay both include working code implementations
but do not address the issue of orphaned block submissions (see Section 3).
Indeed, Ethereum can only learn whether a given block belongs to the “true”
Dogecoin blockchain a posteriori, as Ethereum miners only reach consensus
on Ethereum events.

Bejarano and Guindzberg’s “superblock” relay construction [40], which
shares the same name as the NIPoPoW-related concept above but bears no
technical resemblance to it, explicitly tackles the issue of orphaned block
submissions. Roughly speaking, their relay simulates Dogecoin’s Nakamoto
consensus inside of an Ethereum smart contract in order to keep track of
“lock” events on Dogecoin. Rather than relaying each individual Dogecoin
block header to Ethereum, Bejarano and Guindzberg batch the submissions
into Merkle-hashed “superblocks” in order to save gas. Only in case of
a challenge are the Dogecoin block headers represented the superblock re-
vealed on-chain, in which case the relay appeals to Truebit to check each
scrypt proof-of-work. The protocol weeds out orphaned blocks by penalizing
challenged blocks which do not make it into the simulated “main chain.” As
the smart contract doesn’t view the Dogecoin block headers in absence of
challenges, however, no canonical main chain may exist in case of two incom-
parable but unchallenged forks (e.g. from two extensions with incomparable
partitions of time stamps). In general, the Nakamoto consensus simulator
must have a formal means of determining the main chain, as either there is
moment in which the Bridge Contract generates WOW or there isn’t.

In September 2018, Guindzberg and CoinFabrik publicly demonstrated
[69] their superblock implementation [41] to the Dogethereum bounty judges
as a follow up to their joint presentation with Truebit earlier that year [52].
Both demos included Truebit’s specialized scrypt verifier and Truebit Lite
[36, 81], a semi-altruistic incentive layer and client. The present paper aims
for a simpler and more robust relay construction with efficient verification,
in terms of cost of deposits, bits communicated on-chain, and speed of con-
firmation. In contrast to the superblock construction [40] above, the present
relay construction permits Dogecoin extensions to be submitted sporadically
as opposed to at hourly intervals, confirms crossings in minutes rather than
hours, and minimizes Relayer deposits.
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1.4 Blockchain lingo

We review some technical notions used in our construction. A blockchain
is an immutable, public ledger which grows as miners add a linear order-
ing of blocks to it over time. Dogecoin blocks contain transactions which
transfer DOGE coins from one address to another, while Ethereum blocks
contain state updates for smart contracts [18, 74], or small computer pro-
grams which process tokens, coins, and data. A decentralized process called
Nakamoto consensus [66] determines which blocks get added to the block-
chain in each epoch lasting approximately 14 seconds in Ethereum [17] or
62 seconds in Dogecoin [11]. Each valid block includes a correct solution
to a hard cryptographic problem, tied to it predecessor, called a proof-of-
work. The metadata for a block, which contains a hashed commitment to its
transactions but not a full list of them is called a header. A fork is either a
modification or disagreement in underlying consensus and can refer either to
an event which changes the consensus mining protocol or one which results
in incompatible extensions in the underlying blockchain. The word “fork”
can also refer to one of the incompatible extensions itself.

The longest chain rule refers to the convention in Nakamoto consensus
that the valid chain with the greatest cumulative difficulty, typically the
longest one, is the “correct” one for miners to extend and which eventually
becomes permanent on account of its universal acceptance. A valid block
which ends up on a fork rather than the permanent blockchain is called
orphaned. The first block in a blockchain is called the genesis block, and
the ordinal number of a block is its distance, as measured in transitive proof-
of-works, from the genesis block.

A Merkle tree is a binary tree in which each node is the hash of the
concatenation of its children nodes [61]. In general, the leaves of a Merkle
tree will collectively contain some data of interest, and the root is a single
hash value which acts as a certificate commitment for the leaf values in
the following sense. If one knows only the root of a Merkle tree and wants
to confirm that some data x sits at one of the leaves, then holder of the
original data can provide a path, or Merkle proof, from the root to the leaf
containing x together with the children of each node traversed in the Merkle
tree. Such a path is difficult to fake because one needs to know the children’s
hash preimages for each hash in the path, so with high probability the data
holder will supply a correct path if and only if x actually sits at one of the
leaves. The Merkle hash of a data set is the root of a Merkle tree which
contains the data at its leaves, and we describe such a data set as Merklized.

We shall refer to the “true” Dogecoin blockchain with quotation marks
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because, at moments where distinct miners broadcast blocks at the same
time, one’s perception of the longest chain may depend on network view-
point relative to this pair of blocks. Similarly, the “true” exchange rate
between DOGE and ETH is always related to a particular agent as no such
exact, universal notion exists. We place quotes around the words “lock” and
“unlock” to remind ourselves that Operator have the private keys necessary
to move “locked” DOGE at any moment and, from a cryptographic point-of-
view, need not wait for an “unlock” event. Finally, we shall use the words
“Dogecoin” and “Ethereum” to refer to both communities and networks
without explicit declaration when the distinction is clear from context.

2 Casting and behavior profiles

We give an overview of the agents in our collateralized peg. As hinted in
Section 1.1, and as we shall explore fully in Section 4, our Dogethereum
construction assumes neither distinguished nor honest nodes, although we
do assume rationality as described below. The Bridge Contract, which is
smart contract in Ethereum, manages the overall function and ensures key
properties of the system.

A single entity may simultaneously fill multiple of the roles below and, in
fact, our model predicts some overlap. Actors need not trust other agents or
rely on correctness of systems components other than the Bridge Contract,
Dogecoin’s consensus protocol, bulletproofs, and Truebit. In Section 5.1,
we shall argue that the system’s incentives are robust against collusion. We
make the following security assumptions.

1. Block withholding attacks [78], in which miners find valid blocks but do
not broadcast them, do not occur. As the two-way peg protocol does
not involve randomness outside of witnesses for bulletproofs, block
withholding is unlikely to bias operations.

2. Attackers have limited computational resources and cannot execute
double spends or 51% attacks [66, 78], that is, they cannot erase or
modify transactions recorded on the Dogecoin blockchain.

3. Parties may communicate off-chain, and Sybil attacks, which convolve
identities, are expressly permitted.

4. Attackers will not waste significant financial resources on denial-of-
service attacks on either the Bridge Contract or Ethereum; we ignore
potential profitability from such attacks outside the present closed
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system. Moreover, we assume attackers cannot censor smart contract
transactions. In general, censoring specific actions is difficult because
each smart contract can call other smart contracts.

At a high level, the collateralized peg is a zero-sum game. Agents have
incentive to monitor each other’s actions since some agent loses whenever
another one cheats. Without further ado, let’s meet the characters: Opera-
tors, Crossers, Hodlers, Relayers, and Reporters. We shall refine these roles
further in Section 4. In the descriptions below, history refers to the sequence
of Dogecoin blocks known to the Bridge Contract at a given moment.

2.1 Operators

An Operator facilitates cross-chain consensus hand-offs between DOGE and
WOW by providing ETH backing against newly generated WOW tokens. The
operator stores “locked” DOGE in a Dogecoin address which she fully con-
trols but can lose her ETH collateral if she moves these DOGE prematurely,
that is, before certain WOW tokens get provably burned. The WOW tokens
generated through the “lock” process (Section 4.3) need not be the same as
those burned to release the “lock” (Section 4.7). The Operator’s initial ETH
collateral must exceed the value of her “locked” DOGE. We now characterize
the Operator’s demeanor.

Reasons for participation.

1. Operators receive front-loaded crossing fees, paid in WOW, for
facilitating crossing (see Section 4.2).

2. Operators have bounded capital risk. If the value of the “locked”
DOGE rises above the value of the Operator’s ETH collateral,
the Operator may keep the “locked” DOGE instead of the ETH
collateral. In case of more favorable exchange rates, the Operator
can eventually retrieve back her ETH collateral on a first-in-first-
out basis (Section 4.7). The Bridge Contract never requests the
Operator to add more ETH than her initial collateral deposit.

Assumptions.

A. Operators have access to initial ETH capital to place as collateral
into the Bridge Contract.

B. Operators may not mind holding illiquid ETH collateral for a
while but wouldn’t wish to leave their funds in a smart con-
tract indefinitely. Operators eventually want their ETH back,
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plus some interest. For this reason, the protocol institutes a first-
in-first-out queue for handling ETH collateral (Section 4.6). In
case an Operator’s bridge sits unused due to the exchange rate
or otherwise, the Operator can cross it himself, burn the WOW,
and retrieve both his “locked” DOGE and ETH collateral.

C. Operators control some Dogecoin address and can interact with
Ethereum smart contracts. The Operator must provide a Doge-
coin address at which to “lock” and “unlock” DOGE, and must
also provide ETH collateral to the Bridge Contract (Section 4.2).

D. Operators may monitor the “true” exchange rate between DOGE
and ETH and withdraw “locked” DOGE from the system in ac-
cordance with such observations at the cost of forfeiting ETH
collateral.

E. Operators may wish to monitor the Bridge Contract through par-
ticipation as a Relayer (see Section 2.4 below) in order to avoid
false claims that “locked” DOGE has been moved or was not re-
leased in a timely manner.

F. While it may be in a rational Operator’s best interest to prefer
ETH or DOGE at a given moment, Byzantine choices on the part
of the Operator do not harm the incentive or decrease net value
for other agents (Section 5.1).

2.2 Crossers

Crossers initially hold DOGE coins and wish to obtain WOW tokens. A
Crosser may deposit DOGE into any address controlled by an Operator
(Section 4.3) and, upon confirmation of the deposit via relay (Sections 4.4
and 4.5), receive WOW from the Bridge Contract in return (Section 4.6).
Upon receipt of the WOW, the Crosser transmogrifies into a Hodler (Sec-
tion 2.3).

Reasons for participation.

1. Crossers wish to obtain WOW for use in smart contract opera-
tions.

2. Crossers may intend to resell WOW to others.
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Assumptions.

A. Crossers are willing to pay a modest fee in order to exchange
DOGE for WOW. Thus, each Crosser initially holds DOGE and
must have an ETH address at which to receive WOW.

B. Crossers have DOGE for crossing but also may wish to have on
hand a small amount of ETH to stake temporarily for additional
security (Sections 3.1 and 4.3). Crossers who wish to take advan-
tage of this feature must be able to send data to smart contracts.

C. Crossers monitor “true” exchange rates in order to ensure that
the Operator’s ETH collateral suffices to cover “locked” DOGE.
Crossers can decide whether or not to use a bridge based on the
Operator’s fees and threshold rate for the ETH collateral (Sec-
tion 4.2).

D. Crossers may monitor the Bridge Contract, in the short run, in
order to ensure that their DOGE “locking” is properly recorded
in the Bridge Contract’s history, i.e. that the Dogecoin “lock”
transaction is neither omitted nor manipulated so as to pay newly
minted WOW to an attacker’s Ethereum address. In order to
defend against such vulnerability, the Crosser may participate as
a Relayer (Section 2.4).

E. Crossers can also be Operators. An agent that acts as both an
Operator and a Crosser can pass WOW to herself in order to
maintain liquidity against her “locked” DOGE.

2.3 Hodlers

Any party holding a WOW token is a Hodler. Hodlers who burn WOW
into the Bridge Contract wish to obtain DOGE, and the oldest Operator is
obligated to provide this DOGE to the Hodler, lest the Hodler earn the right
to collect that Operator’s ETH collateral (Section 4.8). A Hodler can either
be a person or a smart contract (see Section 5.2).

We assume that Hodlers track the “true” ETH to DOGE exchange rate.
Empirically, we observe many hodlers doing this in the real world! In par-
ticular, Hodlers will recognize when the margin supported by the ETH col-
lateral becomes insufficient, in which case they must cross their WOW back
to Dogecoin to avoid potential loss of value (Section 4.7). Hodlers have in-
centive to act as Relayers and monitor the Bridge Contract’s history when-
ever they cross WOW into ETH because a malicious Operator could lie to
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the Bridge Contract about transmitting DOGE to the Hodler’s Dogecoin
address. In short, Operators absorb exchange rate fluctuations up to the
WOW[y]’s threshold exchange rate of 1 ETH = y DOGE, while Hodlers bear
the effects of market fluctuation whenever the price of DOGE exceeds this
bound. As Hodlers can exchange WOW for DOGE at any moment, partic-
ipation in the two-way peg incurs minimal liquidity risk for them, whereas
Operators bear only bounded risk relative to the exchange rate.

Hodlers have an incentive to track Dogecoin transactions so that the can
report missing DOGE in exchange for rewards in the form of ETH collateral
(Section 4.8).

2.4 Relayers

Relayers convey “locks” and “unlocks” in Dogecoin to the Bridge Contract
in Ethereum. Relayers engage in a unanimous consensus protocol (see Sec-
tions 4.4 and 4.5), which means that security scales with increased partic-
ipation. Each Relayer posts a deposit (see Section 5.3) which affords the
right to both submit a Dogecoin extension to the Bridge Contract’s history
(Section 4.4) and to challenge the validity of another Relayer’s submission
(Section 4.5). Deposits cover the expense of resolving disputes while acting
as a deterrent against denial-of-service.

Reasons for participation.

1. As described above, Operators, Crossers, and Hodlers each have
skin in the game at various times and may decide to participate
as Relayers in order to avoid being cheated. Since Relayers only
submit Merkle hashes to the Bridge Contract, individual agents
can only recognize an incorrect Merkle hash but can’t tell a priori
whether they are personally affected by its encapsulated attack.
Therefore there exists an incentive for every vulnerable agent to
challenge every bogus Merkle hash. Even if the full contents of
the Merkle hash were to be broadcast publicly off-chain, there is
always at least one potential victim who has explicit reason to
challenge. Even if Operators and Crossers were to conspire to
get the relay stuck (Section 4.9), Hodlers might wish to prevent
the system from derailing.

2. Relayers who successfully extend the Bridge Contract’s history
receive relay tax from each Crosser who sent DOGE to an Oper-
ator in the associated blocks (see Section 4.3).
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Assumptions.

A. Relayers each supply a deposit in ETH which is distinct from any
Operator deposit. This separation ensures that relay activities
do not jeopardize the collateralized peg invariants.

B. Relayers can view the “true” Dogecoin blockchain, compute Merkle
hashes, and send data to smart contracts. After all, the purpose
of the relay is to inform the Bridge Contract about Dogecoin
events.

C. Individual Relayers may not always be online, and need not mon-
itor Dogecoin continuously. A Relayer’s deposit is only at stake
at the time when he proposes an extension to the history or chal-
lenges someone else’s.

D. A relay tax (Section 4.3) helps to avoid inertia and a tragedy
of the commons in which lazy Operators, Crossers, and Hodlers
each wait for someone else to relay information from Dogecoin to
Ethereum.

2.5 Reporters

Reporters provide Merkle proofs of “locks” and “unlocks” stored in the
Bridge Contract’s history to the Bridge Contract itself in exchange for re-
wards. Reporters need not post deposits as the Bridge Contract can itself
verify Merkle proofs and simply ignore them if incorrect or redundant. Di-
rect verification minimizes space for attack surfaces. There are two sources
from which Reporters may collect fees:

1. Operators may offer burn reporting bounties, established at the time
of bridge creation, to ensure that the eventual release of DOGE gets
reported to the Bridge Contract (Sections 4.2 and 4.6).

2. Crossers may offer lock reporting bounties to ensure that the Bridge
Contract learns of their DOGE “locks” (Sections 4.3 and 4.6).

Reporters improve user experience for Operators, and Crossers by au-
tomating certain tasks, however they are not otherwise essential to the pro-
tocol. Agents who wish to perform reporting tasks themselves need not
offers fees to Reporters. Although incentives exist for anyone to partici-
pate as a Reporter, we especially expect Operators, Crossers, Hodlers, and
Dogecoin miners to fill these roles because of the the marginal extra work
required beyond the monitoring they already do on Dogecoin.
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3 Relay design philosophy

At the heart of any two-way peg lies a relay routine which transfers data
and consensus across blockchains. Our relay construction conveys “lock”
and “unlock” events from Dogecoin to Ethereum, although a similar method
could be used to access any data stored on Dogecoin’s blockchain. We remind
the reader here that “lock” and “unlock” events look no different from any
other transaction in the eyes of Dogecoin, however the Bridge Contract can
interpret them as such based on ETH collateral deposits and WOW burns
that it witnesses on the Ethereum side. Here we shall concern ourselves
strictly with the relaying of blocks without attaching any semantic meaning
to the information contained in individual transactions.

We wish for the Bridge Contract to unerringly accept a monotonically
increasing sequence of extensions which mimics blocks on the “true” Do-
gecoin blockchain. Throughout this discussion, we shall assume that an
adversary wishes to exploit the relay by confirming bogus Dogecoin data
onto the Bridge Contract. Let us first consider an attack and a strawman
solution which will inform our ultimate design choices.

Orphaned block submissions. Suppose that a Relayer were to supply the
Bridge Contract with an extension of valid blocks which do not appear on the
“true” Dogecoin blockchain. If the Bridge Contract were to accept such an
extension, not only might bogus “locks” and “unlocks” occur that adversely
affect various agents, but the relay might become non-extendable to honest
Relayers following proof-of-works on the “true” Dogecoin blockchain. A
Relayer could introduce such an error either accidentally or opportunistically
after mining a valid block that failed to reach confirmation on Dogecoin; the
Bridge Contract must reject such orphaned block submissions.

Sampling. An extension may include many Dogecoin blocks. Due to the
prohibitively high cost of communicating a full sequence of Dogecoin blocks
to Ethereum, let alone verifying each of them, one might be tempted to
simply allow the Relayer to provide a Merkle hash of the extension and
sample a block or two from the extension in order to confirm the validity
of its constituents. Unfortunately, searching for an error in this way is like
looking for a needle in a haystack. An adversary could hide a single in-
valid proof-of-work almost anywhere in the sequence, hence the probability
of chancing upon a single error in a long extension is negligible. Bounding
the adversary’s mining power doesn’t help because any Relayer could copy
the “true” Dogecoin blockchain up to any point in the extension and then
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begin his malicious splice from there. Blocks to support such an attack could
be copied from previous or orphaned Dogecoin blocks, intentionally mined
off-line, or even mined in real time. Once a single incorrect proof-of-work
has been injected into the sequence, the subsequent proof-of-works which
correctly follow the malicious could hide the attack from a sampling radar.
We emphasize that it does not suffice to simply observe that the adversary’s
Merkle hash does not match that of the “true” Dogecoin blockchain — the
challenger must somehow prove this to the Bridge Contract. An Ether-
eum protocol cannot distinguish between a “true” Dogecoin block and an
orphaned one simply by checking its validity.

In order to circumvent the problems described in the previous two para-
graphs, we shall require the following three properties which suffice to guar-
antee that an extension belongs to the “true” Dogecoin blockchain.

Requirements. A valid extension submitted to the Bridge must meet the
following three properties.

1. Maximality. The extension length must be (very close to) maximal at
the time of submission.

2. Validity. Every proof-of-work in the extension’s sequence of blocks must
be valid.

3. Shallow-fork-free. The extension is “confirmed” via a witnessing se-
quence of additional, valid proofs-of-works which do not count towards
the extension’s length.

Every block in a correct extension must satisfy Validity, as, according to
the longest chain rule, the “true” Dogecoin blockchain contains only valid
proof-of-works. Note that by “extension length” above we formally mean
cumulative difficulty. Using this definition, any extension of the “true” Do-
gecoin blockchain satisfying Maximality reflects the greatest, cumulative,
valid proof-of-work and therefore represents a “true” Dogecoin blockchain
at some moment. Moreover, any such extension which is “confirmed” via
the Shallow-fork free property, permanently belongs to the “true” Dogecoin
blockchain and avoids including orphaned blocks. In Sections 4.4 and 4.5,
we shall describe how our two-way peg meets the above requirements (see
also the definitions at the beginning of Section 4).
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3.1 Simultaneous crossings

An inevitable but unfortunate situation arises when two Crossers simultane-
ously attempt to cross DOGE via the same Dogecoin address. The Operator
who controls that address may then have more DOGE than he has backed
with ETH collateral, and a rational Operator would then walk off with the
union of the Crossers’ DOGE. In order to combat this shortcoming, Crossers
may optionally register with the Bridge Contract prior to using a bridge
in order to uniquely reserve a crossing spot and avoid accidental collision
(Section 4.3).

3.2 Computational complexity

The relay must resolve disputes regarding the validity of an extension on-
chain. In such cases, rather than presenting all the block headers on-chain at
considerable gas cost from space storage, we rather require the active Relayer
in question to supply a laconic bulletproof demonstrating validity of his
submission. This approach also has the nice side effect of being completely
non-interactive in the sense that the active Relayer simply submits a single
bulletproof to the Bridge Contract, which in turn calls Truebit for binding
verification. The Challenger need only watch this process from the sidelines.
The Relayer’s bulletproof roughly takes the following form (Section 4.5):

“I committed a confirmed, valid sequence of Dogecoin blocks
extending the latest block known to the Bridge Contract at the
time of submission.”

We remark that the more efficient the arithmetic circuit is for the scrypt
proof-of-work bulletproof, the faster and cheaper the proof generation and
verification will be (Section 6). Due to the relay’s threading scheme (Sec-
tion 4.5), the relay need not wait for verification resolution before reading
in the next extension. Hence threading substantially lowers the practical
speed requirements for proof-of-work verification in Dogethereum. scrypt
bulletproof generation and verification times depend on the total number of
blocks in the extension but not the number of transactions per block.

3.3 System highlights

Before presenting a formal specification for the two-way peg, let us anticipate
and recap some properties of the construction.
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1. Forkless. The Dogethereum construction retrofits Dogecoin and Ether-
eum without instituting a fork, change in mining protocol, or delegat-
ing authority to external consensus. Dogecoin (resp. Ethereum) miners
need not witness Ethereum (resp. Dogecoin) events.

2. Currency invariant. The protocol is resilient against exchange rate
fluctuations without appealing a price oracle. Our assumption of ra-
tional actors guarantee that the number of actively circulating WOW
closely resembles the number of current “locked” DOGE. Moreover,
each Operator’s collateral remains constant, regardless of the exchange
rate between ETH and DOGE.

3. Efficient. The relay offers fast confirmation times at a low cost, both
in terms of Ethereum gas and amount of Relayer deposits. Crossers
can obtain WOW in minutes, and the protocol is snoozable in the sense
that it only consumes gas when in use.

4. Secure. We present an explicit and relatively simple construction (Sec-
tion 4), modulo bulletproof and Truebit black boxes, which is amenable
to formal security analysis (Section 5). As we indicated earlier in
this section, for example, the relay attacks resist orphaned Dogecoin
block submissions. Our two-way peg avoids distinguished and altru-
istic nodes (including the Bridge Contract creator), is robust against
Sybil attacks and collusion, and relies exclusively on economic incen-
tives for security.

5. Scalable. Our two-way peg achieves cryptoeconomic security with any
non-negative number of participants, however a greater number of par-
ticipants means even more entwined eyes on the system. The number
of existing WOW tokens does not limit transaction throughput, and
the protocol can handle many simultaneous crossings.

6. Robust. Dogethereum features an open network for anyone to im-
mediately participate as Operator, Crosser, Hodler, Relayer, or Re-
porter with minimal capital and compute resources. The construction
is based on unanimous consensus and offers fair market operation to
all participants. Operators’ collateral eventually gets returned, so long
as the two-way peg remains in use. During periods of moderate price
stability, WOW tokens are low-maintenance and behave exactly like
standard ERC-20 tokens.

23



4 Modules specification

The two-way peg consists of nine modules. We enumerate these in Fig-
ure 3. The major components include the collateralized peg (Bridge open-
ing, Locking, Minting, & Unlocking), it’s relay (Listening & Verification),
and backstops (Reporting missing DOGE & Backtracking). As the relay
involves timing coordination between Dogecoin and Ethereum, we first es-
tablish some relevant notation.

Genesis

Bridge opening

Locking

Backstop modules:

Reporting missing DOGE

Backtracking

Relay (Listening)

Relay (Verification)

Minting

Unlocking

Figure 3: Arrows indicate module sequences over the course of a DOGE
lifecycle. The vertical axis represents time, modulo the center box.

Definition. Let Ethereum time e denote the (approximate) clock time when
the most recent Ethereum block has ordinal number e. We assume that
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network propagation is such that this quantity is well-defined (plus or minus
1 block).

Let us fix c and d as universal, positive, integer-valued constants. We
shall say that a Dogecoin block is confirmed when the network has prop-
agated at least c valid proof-of-works on top of it, and a Dogecoin block
is recently confirmed at Ethereum time e if its ordinal number plus d ex-
ceeds the ordinal number of the most newly confirmed Dogecoin block at
Ethereum time e.

For simplicity of presentation, we shall assume that the Dogecoin block
difficulty remains constant over time. In reality, Dogecoin adjusts its proof-
of-work difficulty after every block and targets one-minute intervals between
blocks [13]. More formally, in order to accommodate difficulty changes, the
notion of maximal should be based on cumulative work rather than length,
since, in reality, the “true” Dogecoin blockchain is not the longest one but the
one with the greatest cumulative work. Each Merklized sequence of proof-of-
works should therefore include a measure of cumulative work and, in places
where we write that the protocol compares lengths, it should really compare
cumulative work. Formally, where we say “block extension of length c,”
we really mean “an extension of blocks whose cumulative proof-of-work is
equivalent to the work of c blocks according to Dogecoin’s difficulty at the
time of the first block in the sequence.”

The Bridge Contract either ignores or penalizes malformed or untimely
interactions. When such actions are clear from context, the protocol de-
scription may not state its course explicitly.

4.1 Genesis

Before anything else happens, a universal Bridge Contract opens in Ether-
eum for managing ETH deposits, recording and coordinating verification for
“locks” in Dogecoin, and minting WOW tokens.

• The Bridge Contract’s history, or record of Dogecoin events, begins in
an empty state and a current date, or latest known Dogecoin block,
of 0.

• The Relay module toggle initializes in “Listening” mode, see “Relay
(Listening)” below.

• For each rational number y, the first-in-first-out y-bridge queue ini-
tializes in an empty state.
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A relay initializing today would be behind on years’ worth of Dogecoin
blocks, however there is no need to catch up on their transactions because
no “locks” could have taken place prior to this initialization. Dogethereum
need not know who owns which DOGE at its inception nor how these these
coins were obtained, and therefore the two-way peg does not track this in-
formation. Barring any unfounded objections from onlookers (Section 4.5),
the creator of the Bridge Contract may simply provide a first “valid” ex-
tension of blocks to the relay saying that no Dogecoin transactions have yet
occurred and matching the Bridge Contract’s current date with the “true”
Dogecoin blockchain. As we shall see, this process is uniformly consistent
with the backtracking process outlined in Section 4.9.

4.2 Bridge opening

Any Operator may establish a channel for converting DOGE into WOW by
posting ETH collateral into the Bridge Contract. More formally, a bridge is
an ETH collateral deposit of some amount x, sent from the Operator’s ETH
address, plus a quintuple whose components correspond to the following
semantics:

1. a value y indicating the maximum exchange rate of the form 1 ETH =
y DOGE for which the deposit x suffices to collateralize against a
Crosser’s “locked” DOGE,

2. a DOGE address to hold the “lock” (controlled by the Operator),

3. the Operator’s crossing fee, measured in WOW[y], for transforming a
Crosser’s DOGE into WOW[y],

4. (optionally) specifying a minimum number of DOGE to initiate a “lock,”
and

5. (optionally) a burn reporting bounty, where the latter is a reward paid
to anyone who later evidences to the Bridge Contract that the Oper-
ator appropriately released the “locked” DOGE.

The capacity of this bridge is x/y, and the head of the bridge is the Dogecoin
address in Item 2. An Operator opens a bridge by sending collateral of x ETH
and the data above to the Bridge Contract.

26



4.3 Locking

A Crosser who wishes to convert DOGE into WOW[y] “locks,” DOGE by
sending these funds to any open bridge head whose associated exchange
rate y exceeds the “true” current exchange rate by a comfortable margin (as
determined by the Crosser).

Prior to “locking” DOGE, the Crosser may register with the Bridge Con-
tract his intention to use a particular bridge head. Registration ensures that
each bridge head gets used at most once and avoids the situation where two
Crossers submit DOGE at the same time and a rational Operator walks
off with the excess. Once the Bridge Contract confirms registration, along
with a small deposit, the Crosser has, say, 20 Dogecoin blocks within which
to “lock” his DOGE as measured by the history at confirmation time. If
the Crosser does not complete the transaction within this time interval,
the registration is canceled and the Crosser pays from his deposit an ETH
registration voiding fee, equivalent to a small percentage of the DOGE he
intended to “lock” at exchange rate y. This fee simply aims to discour-
age denial-of-service; honest Crossers receive a full refund of their deposit,
less gas expenses. Formally, registration is optional; in case of simultaneous
crossings at a single bridge head, the Bridge Contract simply mints WOW
according to the first report that it hears about (Section 4.6).

By sending DOGE to the open bridge head, the Crosser commits to pay
the following fees in WOW[y]:

• the bridge’s crossing fee, which may be a function of the number of
DOGE sent by the Crosser,

• a fixed relay tax, paid by the Crosser to the Relayer who successfully
communicates the Dogecoin block containing the “lock” to the Bridge
Contract (Section 4.6), and

• an optional lock reporting bounty offered to whoever provides a Merkle
proof that the Crosser’s “lock” occurred (Section 4.6).

We shall assume that the Crosser always sends a quantity of DOGE equal
to the bridge capacity. If the Crosser sends excess DOGE, then the Crosser
keeps the surplus. If the Crosser sends too few DOGE, then the Bridge
Contract refunds some of the Operator’s ETH deposit.

4.4 Relay (Listening)

We describe the process by which the system conveys events on Dogecoin to
the Bridge Contract. Relayers convey updates from Dogecoin to the Bridge
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Contract’s history while the Relay module toggles between two mutually ex-
clusive modes called “Listening” and “Verification.” The present Listening
module ends with a call to the Verification module described below.

Definition. A valid extension of the Bridge Contract’s history at Ethereum
time e consists of a triple comprised of the following elements which aim to
satisfy, respectively, the properties of Maximality, Validity, and Shallow-
fork-free from Section 3. The parameter d introduced in the beginning of
Section 4 formalizes the notion in Item 1 below.

1. The ordinal number b of a recently confirmed Dogecoin block at Ether-
eum time e. We say that b is the range of the valid extension.

2. The Merkle hash of the Dogecoin blocks from the history’s current
date at Ethereum time e up through block number b. We call this
root the commitment of the valid extension.

3. The Merkle hash of c blocks witnessing that the commitment in Item 2
has been confirmed in Dogecoin. We call this root the confirmation
witness.

Item 3 is only used in the Verification module in case of a challenge.

Any party that submits sufficient deposit to the Bridge Contract becomes
a Relayer and earns the right to append valid extensions to the Bridge
Contract’s history. At any time, a Relayer may withdraw her deposit at
the cost of losing Relayer status. The required deposit amount to become
a Relayer equals the cost of issuing a Truebit task to check a bulletproof
witnessing Items 2 & 3 above (see Sections 4.5 and 5.3 for more details).
Note that Operator deposits used for bridge opening do not count towards
Relayer deposits.

The first Relayer who submits an alleged valid extension, or submission,
becomes the active Relayer and causes the the Relay module to switch into
“Verification” mode (Section 4.5). Until then, the Relay remains in “Lis-
tening” mode. We remarked earlier that Crossers, Hodlers, and Operators
have incentive to participate as Relayers (Section 2.4) even without taking
into consideration the relay tax reward.

4.5 Relay (Verification)

The Verification module provides the opportunity for any Relayer to chal-
lenge the active Relayer’s submission. Let k < d be a a small but fixed
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security parameter. If no challenges occurs within d−k Dogecoin blocks, as
measured in (expected) equivalent Ethereum time, then Verification times
out and the system accepts the submission. The point of the parameter k is
to prevent a malicious Relayer from knowing a longer chain in the future and
using that to prove that an earlier submission wasn’t maximal (Section 5.4).
In case of acceptance, the Bridge Contract:

1. appends the submission’s commitment to the history and

2. updates the current date to the value from the submission’s range.

Let us now consider the case where some Relayer disagrees with the
submission which, for the remainder of this subsection, we assume occurred
at Ethereum time e. Such a Relayer is called a Challenger. Formally, a
challenge consists of a indication as to whether:

• the submission’s range is too small, in which case the challenge also
includes an (alleged) new valid extension of the Bridge Contract’s his-
tory at the current Ethereum time, or

• the submission’s commitment is faulty.

Each challenge chooses exactly one of these options. A claim of the first
type indicates that none of the blocks in the submission were recently con-
firmed, while a claim of the second type means that the Merkle hash of the
alleged Dogecoin blocks does not represent a valid proof-of work chain. As
a commitment might include orphaned blocks, a Challenger should always
prefer a challenge of the first type. Indeed an unrecognized Merkle hash
with short range need not constitute an errant commitment.

The Bridge Contract only considers the first challenge that it receives,
unless the challenge fails in Step 1(a) below, in which case it continues to
wait for further challenges. There are two cases.

1. Assume that the Challenger claims that the range is too short.

(a) If the range of the Challenger’s (alleged) valid extension exceeds
the submission’s range by less than d, then the challenge is simply
ignored and discarded.

(b) Otherwise, the (alleged) valid extension provided by the Chal-
lenger:

i. replaces the submission,

ii. the Challenger becomes the active Relayer,
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iii. the Verification module restarts, and

iv. the Relayer pays some small penalty to discourage denial-
of-service but has the option to contest the validity of the
Challenger’s new submission, via Truebit (see below), in ex-
change for a refund but at the potential cost of losing her
remaining deposit.

2. Now assume that the Challenger claims that the commitment is faulty.
Then the active Relayer must provide a proof of its correctness, namely
a bulletproof witnessing the following properties of the submission.

• The sequence of blocks represented in the commitment form a
valid sequence of Dogecoin proof-of-work of length prescribed by
the range.

• The first block represented in the commitment is a valid extension
of the latest block in the Bridge Contract’s history at Ethereum
time e. (If the history is empty, as it would be at genesis, ignore
this step).

• The sequence of blocks represented in the submission’s confirma-
tion witness:

– is a valid sequence of Dogecoin proof-of-work of length c and

– extends the commitment.

While the active Relayer prepares the bulletproof, which could take a
while (Section 6), the Bridge Contract splits into two threads. One thread
returns the relay to a Listening state, without adding the submission to the
history, while the other submits the bulletproof, upon receipt, to Truebit
for verification. (If the bulletproof is not forthcoming within the timeout
period, then the Bridge Contract destroys the active Relayer’s deposit.)

The remainder of the thread determines whether the Challenger or the
active Relayer pays for the Truebit task, Either way, the Bridge Contract
does not add the submission to its history. There are two disjoint possibili-
ties.

1. If Truebit accepts the bulletproof, then the Bridge Contract uses the
Challenger’s deposit to pay for the Truebit task and to compensate
the vindicated active Relayer.

2. If Truebit rejects the bulletproof, then the Bridge Contract uses the
active Relayer’s deposit to pay for the Truebit task and to reward the
successful Challenger.
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The Verification module thread terminates.

4.6 Minting

Reporters reveal “locks” to the Bridge Contract by unpacking commitments
stored in its history. Reporters need not post deposits. Formally, a report
consists of a canonical representation of the following:

• a pointer to a commitment in the history, and

• a Merkle proof for a Dogecoin transaction contained within the com-
mitment.

Each Dogecoin transaction is “unused” by default. The minting module
proceeds as follows.

1. A Reporter sends a lock report to the Bridge Contract. The Bridge
Contract then checks whether the report meets the following condi-
tions.

(a) The indicated commitment exists and the the Merkle proof points
to a valid transaction.

(b) The receiver of the transaction is a bridge head whose bridge
corresponds to exchange rate y (for some y).

(c) The sender of the transaction is registered as a Crosser for this
bridge head, if any registration has taken place.

(d) The transaction is “unused.”

2. If all conditions are met, then the Bridge Contract:

(a) mints to the Crosser’s Ethereum address a quantity of WOW[y]
equal to the bridge’s capacity,

(b) adds the bridge to the end of the y-bridge queue,

(c) pays:

i. the lock reporting bounty to the Reporter and

ii. the relay tax to the Relayer who committed the encompassing
block to the history, and

(d) permanently marks the transaction as “used.”

3. Otherwise, the Bridge Contract ignores the lock report.
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4.7 Unlocking

When a Hodler burns WOW[y] into the Bridge Contract, thereby destroying
the tokens, the Operator whose bridge lies at the front on the y-bridge queue
becomes obligated to send an equal number of DOGE to a Dogecoin address
specified by the Hodler. For simplicity, the Operator pays this Dogecoin
transaction fee.

A Hodler may either claim more or less than the DOGE balance stored
at the Operator’s bridge head. At the time of a bridge’s creation, its ETH
collateral equals its capacity divided by y. The bridge’s ETH collateral is
now decreased by the amount of WOW[y] burned by the Hodler divided by y
and placed into escrow. In Section 5.1 we shall argue that the the y-bridge
queue maintains sufficient collateral to cover the Hodler’s exchange request.

In case the Hodler’s WOW[y] burn amount exceeds the number of DOGE
“locked” in the head of the y-bridge queue’s first element, then the Hodler’s
DOGE request is distributed over successor bridges as well.

1. ETH collateral is recursively distributed into escrow among successive
bridges in the y-bridge queue, and

2. each bridge whose head’s balance reaches 0 is popped from the y-bridge
queue.

Upon the Hodler’s burn, the Bridge Contract simultaneously does the
following for each bridge involved in the above recursion.

1. It waits until some designated timeout for a report witnessing the
Operator’s DOGE payment to the Crosser. The Bridge Contract does
the following for each report.

(a) It checks whether submitted report meets all of the following
criteria.

i. The indicated commitment exists and the Merkle proof points
to a valid transaction.

ii. The sender of the transaction is the Operator and the receiver
is the address indicated by the Hodler.

iii. The Dogecoin transaction was reported after the Holder burned
WOW[y].

(b) If these criteria are met,

i. the Reporter receives the burn report bounty(s),
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ii. the Operator receives a refund of her ETH deposit, less the
remaining balance, and

iii. the Unlocking module ends.

(c) Otherwise the report is ignored.

2. If no successful report occurs before the timeout, the Bridge Contract
pays the corresponding fraction of the Operator’s ETH collateral to
the Hodler.

4.8 Reporting missing DOGE

For purposes of security, the Bridge Contract includes two backstop modules.
These modules never execute unless some party deviates from anticipated
rational behavior. At any moment, an Operator can walk off with “locked”
DOGE, and any WOW Hodler can then burn WOW in exchange for his ETH
collateral. The formal process is as follows.

1. The Hodler submits a report to the Bridge Contract demonstrating
that the Operator moved “locked” DOGE out of a bridge with exchange
rate y. For purposes of detection, we assume that the Operator uses
the bridge head exclusively for Dogethereum.

2. The Hodler burns n WOW[y] tokens into the Bridge Contract.

3. If both:

(a) the report is valid and shows that the Operator moved n DOGE,
and

(b) the report’s transaction is “unused,”

4. then the Bridge Contract

(a) sends n/y ETH from the Operator’s deposit to the Hodler,

(b) reduces the bridge’s ETH collateral by the same amount, and

(c) marks the report’s transaction as “used.”

5. Otherwise, the report is ignored.
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4.9 Backtracking

If the Bridge Contract for some reason appends a commitment to the Bridge
Contract’s history which does not reflect the true Dogecoin blockchain, no
honest Relayer can further extend the history using the protocol above.
For this reason, the Bridge Contract permits Relayers to extend its history
from any previous history state. For purposes of consistency, however, only
“locks” and “unlocks” in blocks with higher ordinal number than the Bridge
Contract’s current date will impact present and future Bridge Contract ac-
tions. Backtracking might become necessary, for instance, in a moment
where no Operators, Crossers, and Hodlers are watching and an attacker
cheaply halts operation through a bogus history extension. We remark,
however, that an attacker does not gain coins or tokens via this method
when no DOGE are locked and no ETH collateral is staked, which is the
most likely scenario where no agents are watching.

The size of the Relayers’ deposits (Section 5.3) bounds the depth of se-
cure backtracking. This finite bound may suffice for short-term corrections,
but in cases where the relay remained inactive for a longer period of time,
or in its its moment of genesis (Section 4.1), a deeper backtracking or ac-
celerated extension method may be necessary. Unfortunately, in such cases,
the system lacks the resources to determine whether or not a challenge to
a very long extension is justified, and thus any objection must suffice to
break unanimous consensus without further scrutiny. Thus the relay may
include two deeper backtracking modes beyond the simple one described in
the previous paragraph as follows.

1. Anyone may propose an extension or backtracking of any length, how-
ever any objection or normal extension within, say, a 24-hour period
suffices to cancel that extension.

2. In case 72 hours go by without any progress on Item 1, the two-way
peg may permit an even deeper backup mode which allows extensions
in chunks which are short enough to fall back on standard deposits for
security.

Reinitializing the bridge from a deeply stuck state essentially requires
unanimous consensus, and the method above could result in a permanently
stuck state in case an attacker successfully places a long, bogus extension
with some range that is years into the future. Presumably, however, this
permanent stuck state happened because no one was actually using the
bridge, hence it is not a disaster.

34



parameter suggested value

-confirmation depth c ≈ 10 Dogecoin blocks
-recently confirmed threshold d ≈ 20 Dogecoin blocks
-security parameter k ≈ 2 Dogecoin blocks
-Relayer deposit see Section 5.3
-registration void ≈ 1% of cross in ETH
-time to “lock” after registration ≈ 20 Dogecoin blocks
-penalty for non-maximal extension ≈ 10% of ETH deposit
-timeout to pay “unlock” ≈ 20 Ethereum blocks
-timeout for challenge linear in d
-bulletproof construction timeout linear in length of extension
-maximum extension length ≈ 10,0000 Dogecoin blocks
-reward for correct challenge/
compensation for vindicated Relayer

≈ 1% of verification cost

-deep backtracking delays 24 & 72 hours

Figure 4: Protocol parameters and suggested values.

5 Illustrations

We explore a few scenarios and additional features which explain the work-
ings of the two-way peg.

5.1 Reserve equilibrium

Let us quantify the extent to which Dogethereum’s cryptoeconomic incen-
tives protect the interests of rational agents. We shall argue that agents who
faithfully monitor the ETH to DOGE exchange rate and events on Dogecoin
blockchain, according to the standards described in Section 2, never lose
value due to fractional reserves among DOGE, ETH, or WOW.

Let us first observe that the Bridge Contract alone directly anchors the
reserve ratio between ETH and WOW. As the Bridge Contract has sole au-
thority to both mint and burn WOW tokens and uniquely escrows all ETH
collateral, it necessarily monitors all bookkeeping activities for these two
currencies. The Bridge Contract only mints WOW[y] tokens (Section 4.6)
after an Operator drops ETH collateral into it at exchange rate y (Sec-
tion 4.2), and it only releases ETH collateral when an equivalent number
of WOW[y] tokens get burned at exchange rate y, either through Unlock-
ing (Section 4.7) or Reporting missing DOGE (Section 4.8). Thus we have
observed the following.
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Invariant 1. The number of WOW[y] in circulation equals y times the num-
ber of ETH collateralized at exchange rate y.

Both here and below, the phrase “in circulation” orients the reader from
the perspective of the Bridge Contract. Invariant 1 does not take into ac-
count Hodlers who either stuffed WOW[y] under a mattress or accidentally
lost their private keys.

We now ascertain agents’ benefits from Invariant 1. First, let us un-
derstand why any Hodler who faithfully tracks exchange rates and burns
WOW[y] in a timely manner can recover a fair amount of ETH in case
“locked” DOGE has become unavailable. By virtue of the fact that the
Hodler possesses WOW[y], it follow from Invariant 1 that the Bridge Con-
tract holds some Operator’s ETH collateral of equal or greater value. Now
consider the particular such Operator(s) whose bridge(s) lie at the front of
the y-bridge queue. In case the Hodler attempts to “unlock” DOGE which
is not forthcoming from the Operator(s), then the Bridge Contract ensures
that the Operator(s)’ ETH collateral is available for the Hodler’s collection
(Section 4.7). Thus we obtain the the following.

Invariant 2. A Hodler who believes that the value of 1 ETH exceeds the
value of y WOW[y] never loses net value by exchanging WOW[y] through
the Bridge Contract. In more detail, A Hodler can, at any moment, burn a
quantity of, say, w > 0 WOW[y] in exchange for some amount 0 ≤ d ≤ w of
“locked” DOGE plus (w − d)/y collateralized ETH. The Hodler may choose
any value w within his means, however the parameter d depends on the
current state of the system.

By inspection, Operators, Crossers can preserve value as well by monitor-
ing Dogecoin and challenge as Relayers in case of bogus extensions. Since the
Operator’s ETH collateral is directly recorded in the Bridge Contract (Sec-
tion 4.2), the Bridge Contract can correctly manage the release of this ETH
collateral upon properly learning of an “unlock” assuming the Operator’s
“locked” DOGE did not go missing (Section 4.7). Similarly, a Crosser re-
ceives WOW immediately upon reporting of a “lock” (Section 4.3). Deposits
of honest Relayer deposits are protected via the correctness of bulletproofs
and Truebit operations, as spending of Relayer deposits occurs exclusively
as a result of bulletproof verification (Section 4.5). Moreover Relayers who
neither challenge nor broadcast valid extensions cannot lose their deposits.

As a sanity check, let us review Invariant 2 in the context of rational
actors with an eye towards the desired bijection between “locked” DOGE and
WOW tokens. Consider the two possible cases where an Operator walked
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off with “locked” DOGE. Without loss of generality, assume that the DOGE
were “locked” into a bridge with exchange rate y.

Case 1: The Operator’s ETH collateral exceeds the “true” value
of the formerly “locked” DOGE.

In this case, a rational Hodler will gladly burn WOW[y] in exchange for
the Operator’s ETH collateral, which exists by Invariant 1. Then there’s no
DOGE deficit incurred.

Case 2: The value of the Operator’s formerly “locked” DOGE
exceeds the Operator’s ETH collateral.

In this case, the WOW[y] bridge collapses in the sense that the proto-
col doesn’t care what happens to WOW[y] tokens anymore. Everyone has
switched to using WOW[y/2] tokens at this point, and any remaining
WOW[y/2] Hodlers inherit the consequences of not cashing out to DOGE
soon enough. If in the future the price of ETH rises again, then we are
back again in Case 1 above, which then returns the WOW[y] token supply
to equilibrium.

In summary, if we add rationality assumptions in Invariant 2, then we
effectively obtain the tighter bound d = w since any ETH collateral would
already have been obtained by a Hodler.

Invariant 3. Assume that the“true” exchange rate , according to all Hodlers,
is such that 1 ETH is worth at least y DOGE. Further assume the following.

1. There exist rational Hodlers who report missing DOGE (Section 4.8).

2. Operators are rational in that they challenge Relayers, presumably
Crossers, who attempt to relay bogus “locks” into the Bridge Contract
(Sections 4.3 and 4.5).

3. Crossers are rational insofar as they collect their WOW[y] (Section 4.6)
after crossing (Sections 4.3) and challenge Operators who might at-
tempt to cheat them through bogus relay submissions.

Then for every y, the number of “locked” DOGE with exchange rate y on the
“true” Dogecoin blockchain equals the number of WOW[y] in circulation.

It follows by transitivity from Invariants 1 and 3 that an equilibrium
also exists between the number of “locked” DOGE and the amount of ETH
collateral under the join of the respective assumptions. We remark that
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Item 2 in Invariant 3 is needed to mitigate against the unfortunate situation
where an Operator places an ETH collateral in the Bridge Contract and
then a Crosser misuses the relay by lying about depositing funds into it. In
practice, this situation creates a DOGE deficit until that bridge reaches the
front of its respective bridge queue because there is no way to report the
DOGE as missing.

5.2 Using WOW in smart contracts

Unlike human Hodlers, who can detect changes in price volatility based on
off-chain signals, smart contracts react exclusively to data and events on
Ethereum. Moreover, a smart contract remains dormant until a confirmed
transaction incites a change. Thus a smart contract could miss a critical
change in the DOGE–ETH exchange rate and lose value in its WOW[y] hold-
ing.

In order to mitigate this problem, the smart contract using WOW[y] may
provide an incentive for an outside party to wake it up with new information
about exchange rates, at which time the smart contract might exchange its
WOW[y] for some (possibly smaller quantity of) WOW[y/2]. Operators, who
set the market rate for crossing their bridges (Section 4.2), have incentive
to make bridges with exchange rate WOW[y/2] when the time comes.

Ideally, the smart contract would confirm the new price via a decen-
tralized exchange reflecting “true” market rates and without risking price
manipulation through a set of centrally curated data feeds. Decentralized
exchanges remain a critical, open area for further research.

5.3 Fine-tuning relay deposits

Relay deposits must be sufficient high to pay for the cost of preparing an
scrypt bulletproof and verifying it with Truebit (Section 4.5), but how much
is this exactly? The actual cost could depend on many factors independent
of the price of ETH or Ethereum events, including the local cost of electric-
ity needed to perform the task. Secondarily, the deposit must also be large
enough to cover the penalty for non-maximal extensions and rewards for
correct challenges (Section 4.5). We remark that bulletproofs reduce the de-
posit requirement by minimizing on-chain storage and verification resources.

As the cost of verifying an extension scales with the number of proof-
of-works it contains, a variation in the price of ETH relative to the cost of
electricity could, assuming a fixed amount for the Relayer’s deposit, affect
the maximum extension length. One might prefer to have a fixed deposit,
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rather than a variable maximum extension length based on each Relayer’s
chosen deposit amount, as the latter configuration could bias the system
towards Relayers with the deepest pockets, particularly in cases of infrequent
relay use.

Rather than trying to compose a comprehensive and fixed list of external
factors which could potentially affect the minimal Relay deposit amount, we
instead include this value, along with the maximum length of an extension,
as a parameter in the WOW token itself, similar to exchange rates (Sec-
tions 1.1 and 5.1). Individuals and smart contracts can then independently
decide how to interpret these parameters. A simple heuristic, on which
which users could even agree off-chain, might be to target a deposit amount
equal to the ETH equivalent of, say, the maximum of 5 USD or the cost to
verify a 10,000-block extension. Any WOW whose deposit parameters re-
flect out-of-range deposit parameters might be abandoned, but Hodlers can
exchange them for DOGE before this happens. We remark that changes in
the deposit parameters might necessitate, for security reasons, a new relay
to be initialized via Genesis (Section 4.1).

Other constants from Figure 4 could be parameterized as well, although
for purposes of simplicity or for new feature upgrades, one might simply
choose to deploy a new Bridge Contract instead at the additional cost of
deploying a fresh smart contract.

5.4 Relay security

While we explicitly designed the relay to mitigate against certain vulnera-
bilities (Section 3), its implementation (Sections 4.4 and 4.5) merits further
analysis. The components of a valid extension (Section 4.4) satisfy the Re-
quirements of Maximality, Validity, and Shallow-fork-free (Section 3) in a
bijective fashion. Hence the Bridge Contract’s can safely append to its his-
tory a submission with these properties. Any active Relayer that submits an
extension to the Bridge Contract which breaks one of these three properties
should expect to get challenged and have his submission rejected. Let us
now inspect some more subtle attack surfaces.

Maximality gap parameter. An active Relayer must provide a valid
extension whose range is within d Dogecoin blocks of maximal (Section 4.4),
however the Challenger must respond to any error within Dogecoin d − k
blocks, as measured in Ethereum time, for some security parameter k ≈ 2
(Section 4.5). If the Challenger were allowed to wait longer, he might be
able to successfully challenge an honest Relayer by providing a longer valid
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extension which was not available to the original Relayer at the time of her
submission. A higher value for k would defend against an adversary with
more mining power who, by chance, gets ahead of the main chain via selfish
mining [51, 78] as well as the “Challenging as denial-of-service” attack below.

High range extension. Suppose that an active Relayer provides a range
far greater than what currently exists on the “true” Dogecoin blockchain.
The Relayer would then be unable to provide a correct Merkle hash for the
commitment, since his claimed blocks have not yet been created. Another
Relayer could then recognize the mistake and challenge, and the active Re-
layer would lose his deposit for being unable to provide a correct bulletproof.
Hence this attack is not rational.

Challenging as denial-of-service. A small denial-of-service penalty ap-
plies when an active Relayer is challenged after providing a non-maximal
extension, unless the Challenger was at fault (Section 4.5). Repeatedly
claiming non-maximality thus becomes costly. There might be some risk
that a persistent Challenger could repeatedly challenge himself until the re-
lay reaches its maximum permitted extension length (Section 5.3), however,
the attack would require substantial investment and might be thwarted by
other Relayers who also submit valid extensions in the meantime.

6 Scrypt bulletproofs

Dispute resolution for extensions submitted by Relayers requires an efficient
way to prove validity of chains of Dogecoin proof of work; in particular
Relayers must be able to efficiently prove that they have the pre-images
of many instances of the scrypt hash function using Dogecoin mining pa-
rameters. We have chosen to use bulletproofs for this purpose, an efficient
argument system for arbitrary arithmetic circuits which has been shown to
be competitive with SNARK proof systems in both computational effort and
proof size required [84]. Critically for our purpose of verifying entire chains
of proof of work, bulletproofs have also been shown to be highly efficient
for batch verification. This is done by reducing the verification of m proofs
into verifying a single relation which scales well using an efficient multi-
exponentiation, so that relatively little marginal computation time is added
for each additional proof even while the proof size increases as O(log(m)).

Verification of the scrypt hash function provides especial need for an
efficient proof system, as its memory-hardness involves several thousand calls
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to the xor-heavy stream cipher salsa8, in addition to requiring thousands of
randomized memory accesses, both of which result in a circuit with high
multiplicative complexity [71].

We mitigate the above issue by building an arithmetic circuit for scrypt
verification customized for the Dogecoin mining parameters; In particular
we omit parts of the function not touched using these parameters, such as
PRF chaining in PBKDF2 key derivation, in order to reduce circuit size
and improve efficiency. The circuit was built using xjsnark, an optimized
high-level framework used for encoding arithmetic circuits which produces
an extended variant of the format used by Pinocchio [33, 70]. Extrapolat-
ing from current benchmarks using batch verification implemented over the
secp256k1 curve, we estimate that 1, 10, and 100 Dogecoin proofs-of-work
can be verified in 12, 20, and 80 minutes respectively [20]. Further more
efficient implementations may reduce this time considerably; an implemen-
tation using Rust has recently obtained a 2x speedup using parallel formulas
in the Edwards 25519 curve. Arithmetic circuits for general proofs have not
yet been implemented but development is ongoing [5].

We note that our two-way collateralized peg can also be extended to
work with other blockchains utilizing Nakamoto consensus. In particular,
we can create a two-way peg between Bitcoin and Ethereum using the same
methodology. Using a construction identical to the scrypt arithmetic cir-
cuit above, we also leverage a circuit for SHA256 with 25,344 multiplication
gates, a slight improvement over the previously implemented jsnark cir-
cuit [45]. Concrete benchmarks using the secp256k1 curve yield verification
times for 1, 2, and 100 proofs of 582.4ms, 899.2ms, and 4333.8ms respec-
tively. With only 47ms additional work per proof, it would take just under
8 minutes to verify 10,000 instances of Bitcoin proof of work.

As bulletproofs require circuits to be converted to a set of linear con-
straints, preprocessing is currently a bottleneck in the benchmarking pro-
cess [44]. We are currently working on implementing a more efficient pipeline
to obtain more concrete estimates of circuits with high multiplicative com-
plexity.
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